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Abstract

This paper presents novel Bayesian optimisation algorithms for minimum error
rate training of statistical machine translation systems. We explore two classes of
algorithms for efficiently exploring the translation space, with the first based on
N-best lists and the second based on a hypergraph representation that compactly
represents an exponential number of translation options. Our algorithms exhibit
faster convergence and are capable of obtaining lower error rates than the existing
translation model specific approaches, all within a generic Bayesian optimisation
framework. Further more, we also introduce a random embedding algorithm to
scale our approach to sparse high dimensional feature sets.

1 Introduction

State of the art statistical machine translation (SMT) models traditionally consist of a small number
(<20) of sub-models whose scores are linearly combined to choose the best translation candidate.
The weights of this linear combination are usually trained to maximise some automatic translation
metric (e.g. BLEU) [1] using Minimum Error Rate Training (MERT) [2, 3] or a variant of the Margin
Infused Relaxed Algorithm (MIRA) [4, 5]. These algorithms are heavily adapted to exploit the
properties of the translation search space. In this paper we introduce generic, effective, and efficient
Bayesian optimisation (BO) algorithms [6, 7] for training the weights of SMT systems for arbitrary
metrics that outperform both MERT and MIRA. To our knowledge this is the first application of BO
in natural language processing (NLP) and our results show that their may be significant scope for
using BO to tune hyperparameter in a range of NLP models.

The linear model popular for SMT systems [2] is parametrised in terms of a source sentence f ,
target translation e, feature weights wk and corresponding feature functions Hk(e,f) (including a
language model, conditional translation probabilities, etc.). The best translation is selected by,

ê = arg max
e

{
K∑

k=1

wkHk(e,f)}. (1)

Since the translation metrics (e.g. BLEU score) can only be evaluated between the selected trans-
lations and reference translations (i.e. the standard manual translations from the parallel training
data), meanwhile decoding new translations following Equation 1 is very time consuming, we can-
not tune the linear weights directly as in ordinary classification tasks. The most common approach
is an iterative algorithm MERT [3] which employs N-best lists (the best N translations decoded with
a weight set from a previous iteration) as candidate translations C. In this way, the loss function is
constructed as E(Ē, Ê) =

∑S
s=1 E(ēs, ês), where ē is the reference sentence, ê is selected from

N-best lists by ês = arg max
e∈C

{∑K
k=1 wkHk(e,fs)

}
and S represents the volume of sentences. By

exploiting the fact that the error surface is piece-wise linear, MERT iteratively applies line search to
find the optimal parameters along the randomly chosen directions via Equation 2, generating new
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N-best lists until convergence (no change happened in the new N-best lists),

ŵ = arg min
w

{
S∑

s=1

E

(
ēs, arg max

e∈C

{
K∑

k=1

wkHk(e,fs)

})}
. (2)

Hypergraph, or lattice, MERT [8, 9] aims to tackle problems caused by the lack of diversity in
N-best lists. A hypergraph [10] efficiently encodes the exponential translation space explored by
the beam-search translation decoder. The line search can then be carried out on the edges of the
hypergraph, instead of the translations in the N-best lists. And dynamic programming is used to find
the upper envelope of the hypergraph corresponding to the maximum scoring translation. Prior work
[8, 9] showed that hypergraph MERT is superior to the original N-best algorithm both in speed of
convergence and stability. MIRA is an online large-margin learning algorithm that applies a different
strategy to MERT. It enforces a margin between high and low loss translations and enables stochastic
gradient descent to be used to update parameters. A disadvantage of this approach is that it requires
the global BLEU score, which is a non-linear function of local translation candidate statistics, to be
approximated by a linear combination of sentence level BLEU scores.

In this paper, however, our BO algorithms treat the loss function as a black-box function so that we
could directly query the function value without the cumbersome and inefficient work of constructing
an error surface for random directions. Instead of applying BO to the whole SMT pipeline, which
would require expensive decoding of new translations with every parameter set sampled, our BO
algorithms only decode new translations after obtaining the best parameters on fixed N-best lists or
hypergraphs. Hence our algorithms iteratively run Gaussian processes on the sub-models and only
a few decoding iterations are required to reach convergence. The experiments in Section 3 illustrate
the superiority of our algorithms both in translation quality and speed of convergence.

2 Bayesian Optimisation Tuning Algorithms

Algorithm 1 describes our hypergraph algorithm (HG-BO). The N-best algorithm (NBL-BO) is
similar to HG-BO and can be derived from Algorithm 1 by replacing the hypergraphs with N-best
lists. In HG-BO, both wi and xj represent the weights of the linear model. The weights wi are
used to produce the hypergraphs Hi, while xj are the weights sampled from the GP to compute
the BLEU score (i.e. objective function value) for a fixed set Hi. Since Hi remains unchanged
during an iteration of Bayesian optimisation, the BLEU score calculated for the fixed hypergraphs
approximates the true BLEU score that would be achieved if the translation system were run with
xj . This introduces some noise owing to the variance between wi and xj .

As depicted in Fig. 1, a key aspect of Algorithm 1 is that we place a bound (blue area) around wi

and only consider samples inside this region. The sample with the highest BLEU score will then be

Algorithm 1: Hypergraph BO
Input : Initial weights w0, source sentences F ,

reference sentences Ē.
Output: Final weights wf

for i = 0; i < maxIter; i = i+ 1 do
Decode hypergraphs Hi using wi;
Generate search bound Bi=
{wk

i ∈ wi|wk
i − b 6 xk

i 6 wk
i + b};

Initialise candidate point set X in bounded search
area Bi of the Gaussian process;
for j = 0; j < maxBOIter; j = j + 1 do

xj = argmax
x∈X

EI(x);

Reweight hypergraphs Hi by xj ;
Generate translation set Êj by Viterbi
algorithm;
yj = BLEU(Ē, Êj);
Update GP with (xj , yj);

wi+1 = xbest;
Return wi

Start Point

Search Bound

Sampled points in GP

w0

w1

w2

w3

Figure 1: Bounded search in 2 dimensions.
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Language French-English (fr-en) Spanish-English (es-en) German-English (de-en) Czech-English (cs-en)
Dataset Dev (variance) Test-1 Test-2 Dev (variance) Test-1 Test-2 Dev (variance) Test-1 Test-2 Dev (variance) Test-1 Test-2
MERT 26.1 (2×10−2) 26.8 26.5 29.5 (1×10−4) 28.2 30.2 21.1 (6×10−1) 18.9 20.2 17.7 (5×10−1) 17.8 16.9
MIRA 26.0 (1×10−3) 26.8 26.5 29.2 (1×10−3) 28.5 30.7 20.9 (1×10−2) 18.9 20.3 18.4 (4×10−3) 18.7 17.7

NBL-BO 26.4 (6×10−5) 26.7 26.5 29.7 (1×10−2) 28.1 30.4 22.0 (2×10−3) 19.8 21.0 18.8 (2×10−3) 18.8 17.3
HG-BO 26.4 (3×10−5) 26.8 26.7 29.9 (1×10−4) 28.0 30.1 22.2 (1×10−5) 19.8 20.9 19.1 (1×10−2) 19.1 17.7

CHG-BO 26.4 (3×10−3) 26.9 26.8 29.9 (2×10−3) 28.3 30.4 22.1 (3×10−2) 19.7 20.9 19.2 (2×10−3) 19.3 17.8

Table 1: Translation Performance (BLEU) score
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Figure 2: Convergence of different models

Model Time(h) Iteration
MERT 4 5
MIRA 4 20

NBL-BO 1.5 5
HG-BO 1.5 5

CHG-BO 2 5

Table 2: Time consumption

used to decode new hypergraphs for the next iteration of BO. Intuitively, to speed up convergence,
we would like the search space of BO to be as large as possible. When the search space is too large,
however, a sampled xj could be so far from wi that the generated translations would become unre-
liable thus leading to noisy BLEU measurements. HG-BO is preferable to NBL-BO as it weighs the
translations directly in the hypergraphs, which encode an exponentially larger space of translations
than the N-best lists, and thus noise is diminished. To further expand the translation space searched
at each iteration, we present a variant cumulative hypergraph BO algorithm (CHG-BO) which com-
bines hypergraphs from one previous and current iterations in order to trade stability and speed of
convergence with memory usage.

Similar to MERT, our BO algorithms become less reliable when the number of features in the lin-
ear model exceeds 30. Hence, we introduce a variant of random embedding Bayesian optimisation
(REMBO) [11] into our hypergraph algorithm (HG-REMBO) to tackle the large scale training prob-
lem. The original REMBO generates a random matrix A ∈ Rh×l to map the sample x ∈ Rh from
high dimensional space to a point z ∈ Rl in low dimensional space. The objective function to be
optimised then becomes g(z) = f(Az). Instead of A, we used a regularised random matrix Ā
where Āmn = Amn

‖Am‖1 and transform the objective function to g(z) = f(Āz +w), where w are the
weights producing the hypergraphs. w would remain constant during Bayesian optimisation. In this
way, BO can be carried out in the low dimensional space and the regularisation of A ensures that
each update of the weights remains in a bounded domain.

3 Experiments

We implemented our models using spearmint [7]1 and the cdec SMT decoder [12]2. The datasets
are from WMT14 shared task,3 all tokenized and lowercased. We employ ARD Matern 5/2 kernel
and EI acquisition function. The cdec implementations of hypergraph MERT [9] and MIRA[13] are
used as benchmarks.

The experiment4 results in Table 1, averaged over 3 runs, show that our BO algorithms always
achieve a higher training objective score than MERT and MIRA, and in most cases a higher test
BLEU score. Fig.2 illustrates the convergence w.r.t. the development BLEU score and Fig. 2b

1https://github.com/JasperSnoek/spearmint
2http://www.cdec-decoder.org/
3http://www.statmt.org/wmt14/translation-task.html
4The 4-gram language model is trained on europarl, news-crawl and news-commentary sections, translation

grammar is extracted from news-commentary, while news-test 2010 is used for BO, news-test 2011 and 2012
are used for testing. We use 18 default cdec features and the same initial weights on one machine with 10
processors and trained for 20 iterations. The BO bound size is 0.1 and the number of BO iterations is 100.
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Model French (fr-en) Spanish-English (es-en)
Dataset Dev (variance) Test-1 Test-2 Dev (variance) Test-1 Test-2
MIRA 26.8 (3×10−3) 27.0 30.6 30.0 (4×10−3) 28.3 26.5

HG-REMBO 26.5 (2×10−2) 26.9 30.6 29.8 (1×10−5) 28.3 26.8

Table 3: Adding four sparse feature functions, 1) rule identifier, 2) rule
shape, 3) bigrams on source side and 4) target side of rules, increases the
number of features from 18 to 56,396 in es-en and 207,952 in fr-en. More
details about the rules can be found in [14].

Figure 3: Convergence of BO algorithms

shows a particular case where the imperfect starting weights cause a violent fluctuation initially.
CHG-BO quickly reaches the plateau in 5 iterations but NBL-BO dips again at the 10th iteration.

Table 2 illustrates the efficiency of the BO algorithms. They consistently obtain a good weight set
within 5 iterations, but the best one is always achieved after 7 iterations. This suggests setting the
maximum number of iterations to 10 in order to ensure a good result. Our BO tuning algorithms
only take advantage of multiple processors for decoding, thus there still exists some space to further
improve their efficiency.

Fig. 3a and 3b indicate the comparison of development score and BO score5 at each iteration in
fr-en and cs-en, which again demonstrates the advantage of CHG-BO on stability over NBL-BO and
HG-BO. Fig. 3c and 3d compare the models with different bound size: b = 0.01 is able to achieve
a development and test BLEU score as good as b = 0.1 with more iterations, but b = 0.5 performs
worse on the test dataset. Thus too large search bound may introduce too much noise which in turn
affects the translation performance.

Table 3 shows the experiments on a large number of sparse features. We modify HG-REMBO into
a two step coordinate ascent processes in order to stabilise the updates of the core default feature
weights. First, we optimise the default 18 features, then we fix them and generate a regularised
random matrix to update the large scale sparse features in the low dimensional space. Table 3
demonstrates that HG-REMBO is able to carry out large scale discriminative training, performing
almost on par with MIRA. Although HG-REMBO loses its advantage on speed of convergence as it
requires multiple runs to generate a good transformation matrix, these results illustrate the potential
of applying REMBO on statistical machine translation systems.

4 Conclusion
We introduce novel Bayesian optimisation (BO) algorithms for machine translation. Our algorithms
exhibit faster convergence and achieve higher training objectives and better translation quality than
existing translation model specific approaches. We further demonstrate that by incorporating the
method of random embeddings it is viable to employ Bayesian optimisation to carry out large sale
training with a high number of sparse features. This initial investigation also suggests that BO has
great potential for general natural language processing tasks.
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