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Abstract

In this work, we introduce a straightforward approach for bounding the regret of
Multi-Objective Multi-Armed Bandit (MO-MAB) heuristics extended from stan-
dard bandit algorithms. The proposed methodology allows us to easily build upon
the regret analysis of the heuristics in the standard bandit setting. Using our ap-
proach, we improve the Pareto UCB1 algorithm, that is the multi-objective exten-
sion of the seminal UCB1, by performing a tighter regret analysis. The resulting
Pareto UCB1* also has the advantage of being empirically usable without any
approximation.

1 Multi-Objective Multi-Armed Bandit

The Multi-Objective Multi-Armed Bandit (MO-MAB) setting [1] is described by a set of arms K
associated with a set of random variables vectors {xk,t|t ≥ 1} for each k inK. LetN be the number
of objectives. Vector xk,t = [xk,t,1, . . . , xk,t,N ] indicates the random outcome of the k-th arm in
its t-th trial, where xk,t,i ∈ R. We consider the stochastic setting where all xk,t associated with k
are independent and identically distributed according to some unknown distribution with unknown
expectation vector µk = [µk,1, . . . , µk,N ].

Given two arms a and b, a is said to dominate, or Pareto-dominate, b (denoted a � b) if µa,i ≥ µb,i
for every objective i. The dominance is strict (denoted a � b) if µa,i > µb,i for every objective i.
Finally, the two arms are incomparable (denoted a ‖ b) if a � b and b � a. The set of optimal arms
contains all the non-dominated arms such thatK∗ = {k ∈ K|@k′ ∈ K,µk′ � µk}. The Pareto front
P , also referred to as the Pareto-optimal set, contains the expectations of the optimal arms such that
P = {µk∗ ∀k∗ ∈ K∗}. In this work, we consider the setting where all optimal arms are considered
equivalent, that is we are not biased in playing any of them more than others (in K∗).
The problem can be formulated as a game where a player sequentially selects arms inK and observes
rewards according to the played arms. Let k(t) denote the arm played at episode t and the reward
r(t) = xk(t),t. The goal is to simultaneously maximize the reward over time for all objectives.
Therefore, we want to play as much as possible any optimal arm in K∗. Let nk(t) denote the
number of times arm k has been played of to time t − 1. The performance is measured with the
expected regret metric denoted as

E[R(T )] =
∑
k∈K

E[nk(T )]∆k, (1)

where T is the number of episodes performed up to now and ∆k corresponds to the regret of playing
arm k instead of an optimal arm (in K∗).
A typical approach for adapting standard bandit heuristics to the MO-MAB setting relies on the
concept of Pareto-dominance. Instead of playing the arm that maximizes the expected regret, one
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might randomly play an arm among those for which the expected regret vector is non-dominated,
that would be the candidate set C(t). The usual approach for computing the regret bounds for bandit
heuristics consists in bounding E[nk(T )]. In their analysis of UCB1, UCB2, and εn-greedy, Auer et
al. [2] bound the number of times that the expected value of each suboptimal arm k could be higher
than the expected value of the optimal arm. Working with the Pareto-dominance in the MO-MAB
setting, the analysis can be done by bounding the number of times that the expected vector value of
each suboptimal arm k happens to be in the candidate set C(t).

2 Pareto UCB1

Let µ̂k(t) denote the mean of the observed rewards {r(τ)|k(τ) = k, τ = 1, . . . , t− 1}. Drugan and
Nowe [1] have extended the seminal UCB1 [2] heuristic to the MO-MAB setting. In the resulting
Pareto UCB1 algorithm, a multi-objective expected upper bound

uk(t) = µ̂k(t) +

√2 ln t 4
√
N |K∗|

nk(t)

N

is computed for each arm k, where N is the number of objectives. A candidate set C(t) is then built,
containing all arms for which the upper bound is non-dominated, and k(t) is uniformly picked in
C(t). However, because K∗ is typically unknown, the authors provide the following upper confi-
dence bound for empirical use:

uk(t) = µ̂k(t) +

√2 ln t 4
√
N |K|

nk(t)

N .
In their regret analysis, Drugan and Nowe [1] bound E[nk(T )] for a given suboptimal arm k by the
number of times that uk(t) is non-dominated by uk∗(t), for all episodes t until T , for all k∗ in K∗,
such that

E[nk(T )] = 1 +

T∑
t=K+1

I(k(t) = k)

≤ l +

T∑
t=K+1

I(k(t) = k, nk(t) ≥ l)

≤ l +

T∑
t=K+1

∑
k∗∈K∗

I(uk∗(t) 6� uk(t)),

where l > 0 is an arbitrary number, leading to the regret upper bound

E[R(T )] ≤
∑
k 6∈K∗

8 ln (T 4
√
N |K∗|)

∆k
+

(
1 +

π2

3

) ∑
k 6∈K∗

∆k.

In their analysis, the non-dominance of uk(t) by uk∗(t) for several k∗ in the same episode are
counted as multiple plays of arm k, which explains the dependence on the size of the optimal set in
the regret upper bound.

3 Pareto UCB1*

In this work, we use the concept of ε-dominance [3] to assign an optimal arm k∗ to each suboptimal
arm k, such that k∗ is the one that dominates k the most. Given two arms a and b, a is said to
ε-dominate b (denoted a �ε b) if µa,i + ε ≥ µb,i for every objective i and the strict inequality is
true for at least one objective. It corresponds to the smallest value which must be added to every
objective so that the resulting vector is not strictly dominated by any member of the Pareto-optimal
set. In other words, it measures how far a suboptimal arm is from belonging to P . Therefore, we
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Algorithm 1 Pareto UCB1*
1: assume N is the number of objectives
2: maintain vector µ̂k(t) as the empirical mean of the observed rewards for each arm k up to time
t− 1.

3: t = 0
4: loop
5: t = t+ 1
6: for all arms k in K do

7: uk(t) = µ̂k(t) +

[√
2 ln t

4√
N

nk(t)

]N
8: end for
9: C(t) = {k|@k′ ∈ K, µ̂k′ � µ̂k}

10: randomly select arm k(t) in C(t)
11: play k(t), observe r(t), and update µ̂k(t)(t)
12: end loop

assign to each suboptimal arm k the optimal arm k∗ which maximizes the ε-dominance. Arm k∗ is
therefore the optimal arm with the most chances of dominating arm k. We then bound the number
of times that arm k is played by bounding the number of times that its expected vector value is
non-dominated by the expected value of k∗.

Using the proposed approach, we improve Pareto UCB1 to obtain a tighter bound on the regret that
does not depend on the size of the optimal set K∗. This is also the case for the upper confidence
bound in the resulting Pareto UCB1* given by Algorithm 1, which removes the problem encountered
by Drugan and Nowe [1] when computing uk(t) empirically.

Theorem 1. For the K-armed stochastic multi-objective bandit problem with rewards in [0, 1]N ,
Pareto UCB1* has expected regret

E[R(T )] ≤
∑
k 6∈K∗

8 ln (T 4
√
N)

∆k
+

(
1 +

π2

3

) ∑
k 6∈K∗

∆k,

in time T .

Fact 1 (N -dimensional Chernoff-Hœffding bound). Let X1, . . . ,XM be independent N -
dimensional random variables sampled with E[Xm] = [pm,1, . . . , pm,N ] (not necessarily equal),
X̄ = 1

M

∑M
m=1Xm, and µ = E[X] = 1

M

∑M
m=1[pm,1, . . . , pm,N ].

We consider the following generalization of the standard Chernoff-Hœffding bound for N -
dimensional spaces provided by Drugan et al. [1]

P[X̄ 6≺ µ+ [λ]N ] ≤ Ne−2Mλ2

and P[X̄ 6� µ− [λ]N ] ≤ Ne−2Mλ2

,

where λ ≥ 0.

Definition 1 (k(t), uk(t), C(t)). Let k(t) denote the arm played at time t. On each episode t, an
upper confidence bound uk(t) is computed for each arm k. All arms k in K for which uk(t) is non-
dominated constitute the candidates set C(t). The arm k(t) is uniformly selected among members of
C(t).

Definition 2 (Quantities nk(t), µ̂k(t)). Let nk(t) denote the number of plays of arm k un-
til time t − 1. Empirical mean µ̂k(t) = [µ̂k,1(t), . . . , µ̂k,N (t)] is defined as µ̂k,i(t) =(∑t−1

τ=1:k(τ)=k rk(τ)
)
/
(
nk(t) + 1

)
. Note that µ̂k,i(t) = 0 when nk(t) = 0.

The proof of Theorem 1 follows the proof for Pareto UCB1 [1] and UCB1 [2]. Let l > 0 be an

arbitrary number, we denote cn(t) =

√
2 ln (t

4√
N)

n . We can bound the expected number of plays of
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a suboptimal arm k as follows:

E[nk(T )] = 1 +

T∑
t=K+1

I(k(t) = k)

≤ l +

T∑
t=K+1

I(k(t) = k, nk(t) ≥ l)

≤ l +

T∑
t=K+1

I(uk∗(t) 6� uk(t), nk(t) ≥ l)

≤ l +

T∑
t=K+1

I(µ̂k∗(t) + [cn∗k(t)(t− 1)]N 6� µ̂k(t) + [cnk(t)(t− 1)]N , nk(t) ≥ l)

≤ l +

T∑
t=K+1

I( min
0<s<t

µ̂k∗(s) + [cs(t− 1)]N 6� max
l≤sk<t

µ̂k(sk) + [csk(t− 1)]N )

≤ l +

∞∑
t=1

t−1∑
s=1

t−1∑
sk=1

I(µ̂k∗(s) + [cs(t)]
N 6� µ̂k(sk) + [csk(t)]N ),

(2)

where k∗ is the optimal arm that dominates k the most. The non-domination in the last inequality
implies that at least one of the following conditions must hold: µ̂k∗(s) 6� µk∗ +[cs(t)]

N , µ̂k(sk) 6≺
µk + [csk(t)]N , and µk∗ 6� µk + 2 · [csk(t)]N . We bound the probability of the first two events
using Fact 1 such that

P[µ̂k∗(s) 6� µk∗ + [cs(t)]
N ] ≤ t−4 and (3)

P[µ̂k(sk) 6≺ µk + [csk(t)]N ] ≤ t−4. (4)

For sk ≥ 8 ln t
4√
N

∆2
k

, we have

µk∗,i − µk,i − 2csk(t) ≥ µk∗,i − µk,i −∆k ≥ 0

for at least one objective i. Therefore, by using l =
⌈

8 ln t
4√
N

∆2
k

⌉
along with Equations 3 and 4 in

Equation 2, we obtain

E[nk(T )] ≤

⌈
8 ln t 4

√
N

∆2
k

⌉
+

∞∑
t=1

t∑
s=1

t∑
sk=1

2t−4 ≤ 8 ln t 4
√
N

∆2
k

+ 1 +
π2

3
,

which leads to Theorem 1 when substituted into Equation 1.

4 Conclusion

In this work, we have introduced a conceptually simple approach for performing the regret analysis
of MO-MAB algorithms based on the most dominant optimal arms instead of all the optimal set.
Using our methodology, we have proposed an improved version of the Pareto UCB1 heuristic. Pareto
UCB1* has tighter regret bounds and it can be used empirically without approximations as we have
removed the inconvenient dependence of Pareto UCB1 upon the size of the optimal set.
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