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Abstract

Unknown constraints arise in many types of black-box optimization problems.
They may arise due to unpredictable system failures, search space bounds that are
unknown a priori, or simply as a means of trading off different objectives. Several
methods have been proposed recently for performing Bayesian optimization with
constraints. These methods are based on the expected improvement (EI) heuris-
tic. However, EI can lead to several pathologies when used with constraints. For
example, computing EI requires a current best solution, which may not exist if
the data collected so far does not satisfy the constraints. Furthermore, in the case
of decoupled constraints, i.e., when one can independently evaluate the objective
or the constraints, using EI leads to a pathology that prevents exploration. By
contrast, information-based approaches do not have these problems. In this pa-
per, we present a new information-based method called Predictive Entropy Search
with Constraints (PESC). We show that PESC compares favorably to EI-based
approaches on synthetic data. This is a promising direction towards a unified so-
lution for constrained Bayesian optimization.

1 Introduction
We are interested in finding the global maximum x? of an objective function f(x) over some
bounded domain, typically X ⊂ Rd, subject to the non-negativity of a series of constraint func-
tions c1, . . . , cK . This can be formalized as

max f(x) s.t. c1(x) ≥ 0, . . . , cK(x) ≥ 0 . (1)

However, f and c1, . . . , cK are unknown and can only be evaluated via expensive queries to black-
boxes that provide noisy outputs of the form yfi ∼ N (f(xi), σ

2
f ) for f and yki ∼ N (ck(xi), σ

2
k) for

ck and k = 1, . . . ,K. We seek to find a solution to (1) with as few queries as possible.

In this we work we extend predictive entropy search (PES) [6] to solve (1), an approach that we call
PES with constraints (PESC). PESC is a sequential optimization method which after n evaluations
of f and c1, . . . , cK , proposes to evaluate these functions at the location xn+1 which approximately
maximizes the expected information gain about the constrained maximizer x?. We compute this in-
formation gain by conditioning on the objective data Df

n = {(x1, y
f
i ), . . . , (xn, y

f
n)} and constraint

data D1
n, . . . ,DK

n , where Dk
n = {(x1, y

k
i ), . . . , (xn, y

k
n)} for k = 1, . . . ,K. PESC models this data

assuming that f and c1, . . . , cK follow independent Gaussian process (GP) priors [12].

While previous approaches to the problem of Bayesian optimization with unknown constraints have
been proposed, most are variants of expected improvement (EI) [10, 8]. Initially proposed by [13]
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one method of extending EI to the constrained setting considers the expected feasible improvement,
where the constraints are given as above; such approaches have recently been independently devel-
oped in [3, 2, 14]. Alternatively [4] consider the integrated change in improvement under additional
points with respect to expected feasibility and [11] consider the probability of improvement under
a similar measure. In the next section we describe the pathologies that arise when applying EI to
constrained problems—providing much of the motivation for this work.

2 Expected improvement with constraints (EIC)
Because improvement can only occur if all the constraints are satisfied, approaches which compute
the feasible EI are obtained by weighting the original expected improvement with the posterior
probability of the constraints being satisfied. The associated EIC acquisition function is given by

α(x) = EI(x|η,Df )
∏K

k=1 p(ck(x) ≥ 0|Dk) , (2)

where EI(x|η,Df ) =
∫

max(0, f(x)− η)p(f(x)|Df )df(x) is the expected improvement over η at
x given the collected data Df . The constant η represents the expected value of f at the best solution
found so far. In the unconstrained case, this is usually the maximum of the posterior mean for f [1].
In the constrained case, η is the largest value of the posterior mean for f such that all the constraints
are satisfied at the corresponding location. However, since information about the constraints is only
available through noisy measurements, we can never be certain that the constraints will be satisfied
at any particular location. To avoid this problem, Gelbart et al. consider in [3] a location x to be
feasible only if all the constraints are satisfied at x with high posterior probability, that is, if

∀k ∈ {1, . . . ,K}, p(ck(x) ≥ 0|Dk) ≥ 1− δk , (3)

where the δk are small positive numbers. This is called a probabilistic constraint. Under this new
formulation, η is the the largest value of the posterior mean for f such that (3) is satisfied at the
corresponding location. However, when no point in the search space is feasible, η does not exist
and EI cannot be computed. In this case, Gelbart et al. ignore the factor EI(x|η,Df ) in (2) and only
consider the probability of the constraints being satisfied. The resulting acquisition function focuses
only on searching for a feasible location and ignores learning about f .

Note that with probabilistic constraints, EIC is not the true expected improvement of the best fea-
sible solution. This is clear because the EIC does not depend on δ. Computing the true expected
improvement does not work because of the following pathology: observing a single noisy constraint
satisfaction is typically insufficient to push the posterior probability of satisfaction above 1− δ; thus
a myopic strategy like EI will see zero potential improvement from a single evaluation.

Furthermore, Gelbart et al. identify a pathology with EI when one can individually evaluate the
objective or the constraints (called decoupled constraints): the best solution x∗ must have a high
objective value and high (non-negative) constraint values. This is a conjunction (“AND”) of several
conditions. If one is only evaluating the objective, or a single constraint, this conjunction cannot be
satisfied by that single observation. Thus, the observed x cannot become the new best as a result
of a decoupled observation and so the expected improvement will be zero. Therefore EI is not
sensible in this decoupled setting. Gelbart et al. circumvent this pathology by treating decoupling
as a special case and using a two-stage acquisition function: first, x is chosen with EIC, and then
the task (whether to evaluate the objective or one of the constraints) is chosen with Entropy Search
(ES) [5] given x. This approach does not take full advantage of the available information in the way
a joint decision of x and the task would.

Our new method PESC does not have the problems mentioned above. First, the PESC acquisition
function does not depend on the current best feasible solution; and, second, PESC naturally separates
the contribution of each function evaluation (objective or constraint) in its acquisition function. Our
experiments with synthetic data show the improved performance of PESC compared to the method
proposed by Gelbart et al. in [3] in the basic setting of joint evaluations, where EI can be applied.

3 Predictive entropy search with constraints
We want to maximize our information about the location x?, the constrained global maximum,
whose posterior distribution is p(x?|Df

n,D1
n, . . . ,DK

n ). Therefore, we collect data at the xn+1 that
maximizes the expected reduction in the differential entropy H(·) of the posterior on x?. We follow
[7, 6] and rewrite this acquisition function as the mutual information between yf , y1, . . . , yK and
x? given the collected data Df

n,D1
n, . . . ,DK

n , that is,
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α(x) = H
[
p(yf , y1, . . . , yK |Df

n,D1
n, . . . ,DK

n ,x)
]
−

E
{

H
[
p(yf , y1, . . . , yK |Df

n,D1
n, . . . ,DK

n ,x,x?)
]}

, (4)

where the expectation is now with respect to the posterior on x?, that is, p(x?|Df
n,D1

n, . . . ,DK
n ), and

p(yf , y1, . . . , yK |Df
n,D1

n, . . . ,DK
n ,x,x?) is the posterior predictive distribution for yf , y1, . . . , yK

given Df
n,D1

n, . . . ,DK
n and conditioned to the location x? of the global solution to the constrained

optimization problem. We call this distribution the conditioned predictive distribution (CPD).

The first term on the right-hand side of (4) is straightforward to compute: it is the entropy of
the predictive distribution of independent GPs. This is one half of the sum of the log predictive
variances plus 1

2 (K + 1) log 2πe. However, the second term has to be approximated. For this,
we first approximate the expectation by averaging over samples of x? approximately drawn from
p(x?|Df

n,D1
n, . . . ,DK

n ) using the method described in [6]. To sample x?, we first approximately
draw f and c1, . . . , cK from their GP posteriors using a finite parameterization of these functions.
Then we solve a constrained optimization problem using the sampled functions. The solution to this
problem is the sample of x?. For each value of x? generated by this procedure, we approximate the
CPD p(yf , y1, . . . , yK |Df

n,D1
n, . . . ,DK

n ,x,x?) as described in the next section.

3.1 Approximating the conditioned predictive distribution
We can approximate the CPD by first approximating the noise free version of the CPD (NFCPD),
that is, the posterior predictive distribution for f̄ = f(x), c̄1 = c1(x), . . . , c̄K = cK(x) given
Df

n,D1
n, . . . ,DK

n and x?, and then convolving that approximation with additive Gaussian noise on
f̄ , c̄1, . . . , c̄K with variance σ2

f , σ
2
1 , . . . , σ

2
K . The NFCPD can be informally written as

p(f̄ , c̄1, . . . , c̄K |Df
n,D1

n, . . . ,DK
n ,x,x?) = Z−1

∫
δ[f̄ − f(x)]δ[c̄1 − c1(x)] · · · δ[c̄K − cK(x)][∏

x′ 6=x?

({∏K
k=1 Θ[ck(x′)]

}
Θ[f(x?)− f(x′)] +

{
1−

∏K
k=1 Θ[ck(x′)]

})]
Θ[c1(x?)] · · ·Θ[cK(x?)]p(f |Df

n)p(c1|D1
n) · · · p(cK |DK

n )df dc1 . . . dcK , (5)

where the integral above marginalizes out the infinite dimensional vectors f , c1, . . . , cK encoding
the objective and the constraint functions. These vectors are sampled from the posteriors p(f |Df

n),
p(c1|D1

n), . . . , p(cK |DK
n ), which are infinite dimensional multivariate Gaussian distributions. The

Dirac deltas in the first line of (5) project these infinite dimensional vectors to their corresponding
values at x. The Heaviside step functions (denoted by Θ) in the bottom line of (5) guarantee that x?

is a feasible solution. The infinite product in the middle line of (5) guarantees that x? is the global
solution. This factor takes value one when f(x′) is smaller than f(x?) for all x′ 6= x? such that all
the constraints are satisfied at x′ and zero otherwise. Finally, Z is a normalization constant.

We find a Gaussian approximation to (5) in several steps. We first approximate the infinite product
in (5) with a finite dimensional one only over the locations at which we have collected data, that
is, x1, . . . ,xn. Let f , c1, . . . , cK be the (n + 1)-dimensional vectors containing the concatenation
of the evaluations of f, c1, . . . , cK at x1, . . . ,xn and x?. We can then obtain a finite dimensional
approximation to the factors in the second and third lines of (5) as

q1(f , c1, . . . , cK) =
[∏n

i=1

({∏K
k=1 Θ[ck,i]

}
Θ[fn+1 − fi] +

{
1−

∏K
k=1 Θ[ck,i]

})]
Θ[c1,n+1] · · ·Θ[cK,n+1]p(f |Df

n)p(c1|D1
n) · · · p(cK |DK

n ) , (6)

where p(f |Df
n)p(c1|D1

n) · · · p(cK |DK
n ) are the GP predictive distributions on f , c1, . . . , cK given

the collected data. Because (6) is not tractable, we approximate the normalized version of q1 with a
product of Gaussians using expectation propagation (EP) [9]. In particular, we obtain

Z−1
q1 q1(f , c1, . . . , cK) ≈ q2(f , c1, . . . , cK) = N (f |mf ,Vf )

∏K
k=1N (ck|mk,Vk) , (7)

where Zq1 is the normalization constant of q1 and mf ,m1, . . . ,mK and Vf ,V1, . . . ,VK are mean
vectors and covariance matrices determined by EP. Details will be given in a supplementary material
that will be attached to the final version of this work. Given q2, we can approximate (5) by

p(f̄ , c̄1, . . . , c̄K |Df
n,D1

n, . . . ,DK
n ,x,x?) ≈ Z−1

2

∫
p(f̄ |f)p(c̄1|c1) · · · p(c̄K |cK)[{∏K

k=1 Θ[c̄k]
}

Θ[fn+1 − f̄ ] +
{

1−
∏K

k=1 Θ[c̄k]
}]
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Figure 1: Median utility gap for PESC and EIC with d = 2 (left) and d = 8 (right).

q2(f , c1, . . . , cK) df dc1 · · · dcK , (8)

where Z2 is a normalization constant and p(f̄ |f), p(c̄1|c1), . . . , p(c̄K |cK) are Gaussian conditional
distributions given by the GP priors on f, c1, . . . , cK . These conditional distributions approximate
the deltas in the first line of (5). Note that, in the second line of (8), we have introduced one of
the factors forming the infinite product in (5). This is the factor for which x′ corresponds to the
location x at which we are making predictions and it guarantees that f̄ = f(x) is smaller than
fn+1 = f(x?) when all the constraints are satisfied at x, that is, c̄k = ck(x) ≥ 0 for all k. Note
that the product of p(f̄ |f), p(c̄1|c1), . . . , p(c̄K |cK) and q2 in (8) results in K + 1 joint multivariate
Gaussian distributions, the first one for f̄ and f and the K remaining ones for each of the c̄k and ck.
After marginalizing out f1, . . . , fn and c1, . . . , cK we can rewrite (8) as

p(f̄ , c̄1, . . . , c̄K |Df
n,D1

n, . . . ,DK
n ,x,x?) ≈ Z−1

2

∫ [{∏K
k=1 Θ[c̄k]

}
Θ[fn+1 − f̄ ] +

{
1−

∏K
k=1 Θ[c̄k]

}]
N ([f̄ , fn+1]|m′f ,V′f )

∏K
k=1N (c̄k|m′k, v′k) dfn+1 . (9)

Details for m′f , V′f , m′1, . . . ,mK , v′1, . . . , v
′
K will be included in the supplementary material.

3.2 Approximating the entropy of the CPD
The normalization constant Z2 in (9) can be computed analytically. This allows us to obtain the
marginal variances of the right-hand-side of (9) by computing the gradient of logZ2 with respect to
m′f , V′f , m′1, . . . ,mK , v′1, . . . , v

′
K using formula 5.13 in [9]. These expressions will be included in

the supplementary material. If we assume independence in the NFCPD (5), we can then approximate
the entropy in the CPD by performing the following operations. First, we add the noise variances
σ2
f , σ

2
1 , . . . , σ

2
K to the marginal variances of the right-hand-side of (9) and second, assuming Gaus-

sianity, we sum one half of the logarithm of the resulting variances and finally add (K+1)
2 log(2πe).

4 Experiments
We evaluate the performance of predictive entropy search with constraints (PESC) in experiments
with synthetic functions following the same experimental set up as in [5, 6]. The search space is
the unit hypercube of dimension d, and the ground truth objective f is a sample from a zero-mean
GP with a squared exponential covariance function of unit amplitude and length scale ` = 0.1 in
each dimension. We represent the function f by first sampling from the GP prior on a grid of
1000 points and then defining f as the resulting GP posterior mean. We use a single constraint
function c1 whose ground truth is sampled in the same way as f . The evaluations for f and c1 are
contaminated with i.i.d. Gaussian noise with variance σ2

f = σ2
1 = 0.01. We compare PESC and EIC

with δ = 0.05 using GP hyperparameters that are matched to the ground truth. In both methods we
make recommendations by finding the location with highest posterior mean for f such that c1 ≥ 0
with probability at least 1 − δ. For each recommendation at x, we compute the utility gap |f(x) −
f(x?)|, where x? is the true solution of the optimization problem and we treat a recommendation that
violates the constraint as the worst possible objective function value. PESC and EIC are initialized
with the same 3 random points drawn using latin hyper-cube sampling.

Figure 1 shows the median of the utility gap for each method across 500 different samples of f and
c1 for dimensionalities d = 2 (left) and d = 8 (right). We report the median because the empirical
distribution of the utility gap is heavy-tailed and therefore the median is more representative of the
bulk data location than the mean. Overall, PESC performs significantly better than EIC.
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5 Future work and conclusion
Two main lines of future work are needed. First, a more general form of PESC will be derived which
encompasses the constraint scenarios described earlier (e.g. decoupled constraints). Second, real-
world experiments will be performed to show the utility of PESC beyond synthetic problems. This
paper shows that PESC is a promising algorithm and has the potential to be a unified framework for
constrained Bayesian optimization that is both theoretically appealing and effective in practice.
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