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Abstract

We propose a novel information-theoretic approach for Bayesian optimization
called Predictive Entropy Search (PES). At each iteration, PES queries the point
maximizing the expected information gain with respect to the the global max-
imum. PES relies on a reformulation of the expected reduction in differential
entropy that allows us to obtain approximations that are both more accurate and
efficient than other alternatives such as Entropy Search (ES). Furthermore, PES
can easily perform a fully Bayesian treatment of the model hyperparameters while
ES cannot. We show that the increased accuracy of PES leads to significant gains
in optimization performance.

Note: this is a greatly shortened version of [5]; for further details, experiments,
and discussion please refer to the longer work.

1 Introduction

In this work we are interested in finding the global maximizer x? = arg maxx∈X f(x) of a function
f over some bounded domain, typically X ⊂ Rd. We assume that f(x) can only be evaluated
via queries to a black-box that provides noisy outputs of the form yi ∼ N (f(xi), σ

2). We note,
however, that our framework can be extended to other non-Gaussian likelihoods. In this setting,
we describe a sequential search algorithm that, after n iterations, proposes to evaluate f at some
location xn+1. To make this decision the algorithm conditions on all previous observations Dn =
{(x1, y1), . . . , (xn, yn)}. After N iterations the algorithm makes a final recommendation x̃N for
the global maximizer of the latent function f . See [2] for a detailed tutorial.

We take a Bayesian approach to the problem described above and use a probabilistic model for the
latent function f to guide the search and to select x̃N . In this work we use a zero-mean Gaussian
process (GP) prior for f . This prior is specified by a positive-definite kernel function k(x,x′).
Given any finite collection of points {x1, . . . ,xn}, the values of f at these points are jointly zero-
mean Gaussian with covariance matrix Kn, where [Kn]ij = k(xi,xj). For the Gaussian likelihood
described above, the vector of concatenated observations yn is also jointly Gaussian with zero-mean.
Therefore, at any location x, the latent function f(x) conditioned on past observations Dn is then
Gaussian with marginal mean µn(x) and variance vn(x). See [12] for a more detailed derivation.

We follow an information-theoretic approach for active data collection as described in [9]. In [14]
the authors propose an entropy-reduction technique for the optimization problem addressed in this
paper, however their approach requires the evaluation of the expected posterior information gain
over a grid in the input space. The work of [4] requires no such grid, but instead relies on a difficult-
to-evaluate approximation. In this paper, we derive a rearrangement of this information-based acqui-
sition function which leads to a more straightforward approximation that we call Predictive Entropy
Search (PES). We also show empirically that our approximation is more accurate than that of [4],
resulting in real performance gains.
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2 Predictive entropy search

Our exploration strategy relies on selecting the point xn+1 which maximizes the expected reduction
in differential entropy. The corresponding acquisition function can be written as

αn(x) = H[p(x?|Dn)]− Ep(y|Dn,x)[H[p(x?|Dn ∪ {(x, y)})]] , (1)

where H[p(x)] = −
∫
p(x) log p(x)dx represents the differential entropy of its argument and the

expectation above is taken with respect to the posterior predictive distribution of y given x. The
exact evaluation of (1) is infeasible in practice. The main difficulties are i) p(x?|Dn ∪ {(x, y)})
must be computed for many different values of x and y during the optimization of (1) and ii) the
entropy computations themselves are not analytic. To avoid this, we follow the approach described
in [6] by noting that (1) can be equivalently written as the mutual information between x? and y
given Dn. Since the mutual information is a symmetric function, αn(x) can be rewritten as

αn(x) = H[p(y|Dn,x)]− Ep(x?|Dn)[H[p(y|Dn,x,x?)]] , (2)

where p(y|Dn,x,x?) is the posterior predictive distribution for y given the observed dataDn and the
location of the global maximizer of f . Note that, unlike the previous formulation, this objective is
based on the entropies of predictive distributions, which are analytic or can be easily approximated,
rather than on the entropies of distributions on x? whose approximation is more challenging.

The first term in (2) is the entropy of a Gaussian and as a result can be computed analytically. The
second term can be approximated by first performing a Monte Carlo average over M samples of
the optimizer x(i)

? and then approximating p(y|Dn,x,x?) by a Gaussian with variance vn(x|x(i)
? ).

Given these approximations the resulting acquisition function can be written as

αn(x) ≈ 1
M

∑M
i=1

{
0.5 log[vn(x) + σ2]− 0.5 log[vn(x|x(i)

? ) + σ2]
}
. (3)

In the next two sub-sections we will detail these two approximations. Finally, although we will
not describe this process here, this acquisition function can further be marginalized over kernel
hyperparameters. This is a significant advantage with respect to other methods that optimize the
same information-theoretic acquisition function but do not marginalize over the hyper-parameters,
as we will show in our experiments.

2.1 Sampling from the posterior over global maxima

In order to implement PES we must first approximately sample from the conditional distribution of
the global maximizer x? given the observed data Dn, i.e. from

p(x?|Dn) = p
(
f(x?) = max

x∈X
f(x)

∣∣Dn) . (4)

In order to do so we will first sample an analytic approximation to f and optimize the resulting
sample. Our approximation can be obtained via Bochner’s theorem [1] which states that any shift-
invariant kernel k can be written as the Fourier transform of its spectral density s(w). Letting
p(w) = s(w)/α be the associated normalized density, we can write the kernel as the expectation

k(x,x′) = αEp(w)[e
−iwT(x−x′)] = 2αEp(w,b)[cos(wTx + b) cos(wTx′ + b)] , (5)

where b ∼ U [0, 2π]. Letting φ(x) =
√

2α/m cos(Wx+b) be anm-dimensional feature map con-
sisting ofm samples from p(w, b) we can then approximate the kernel with k(x,x′) ≈ φ(x)Tφ(x′)
as in [11]. The feature mapping φ(x) allows us to approximate the Gaussian process posterior for
f as a linear model f(x) = φ(x)Tθ where the posterior for θ is a simple Gaussian which we can
sample from directly.

2.2 Approximating the predictive entropy

The next step in implementing PES involves approximating H[p(y|Dn,x,x?)] from (2). To do so
we will construct a Gaussian approximation to p(y|Dn,x,x?) which approximately enforces the
constraints
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C1. ∇f(x?) = 0 and upper[∇2f(x?)] = 0;

C2. diag[∇2f(x?)] < 0, which together with C1 approximately ensures that x? is a local
maximizer, and f(x?) > maxi≤n f(xi), i.e. that x? is greater than past observations; and

C3. f(x?) > f(x), i.e. that x? is greater than subsequent queries.

Consider the latent variable z = [f(x?); diag[∇2f(x?)]]. We can compute the posterior distribu-
tion p(z|Dn,C1) by noting that the covariance between inputs and gradients can be determined by
differentiating the kernel function [13]. The resulting posterior is a multivariate Gaussian with mean
m0 and covariance V0. Constraints C2 can then be incorporated by writing

p(z|Dn,C1,C2) ∝ Φσ2(f(x?)− ymax)
[∏d

i=1 I
(
[∇2f(x?)]ii ≤ 0

)]
N (z|m0,V0) , (6)

where Φσ2 is the cdf of a zero-mean Gaussian distribution with variance σ2. The first new factor
in this expression guarantees that f(x?) > ymax + ε, where we have marginalized out the zero-
mean Gaussian noise ε, with variance σ2. The second set of factors guarantees that the entries in
diag[∇2f(x?)] are negative. We will then approximate this density with

p(z|Dn,C1,C2) ≈ q(z) ∝
[∏d+1

i=1 N (zi|m̃i, ṽi)
]
N (z|m0,V0) (7)

formed by replacing the intractible factors with Gaussian factors computed using Expectation Prop-
agation (EP) [10]. The resulting algorithm is similar to the implementation of EP for binary classi-
fication with Gaussian processes [12]. Note that these computations have so far not depended on x,
so we can compute them for a given x? and use them to evaluate any subsequent inputs.

Finally, given a query input x let f = [f(x); f(x?)] be the concatenation of the values of the latent
function at the input and optimizer. We can write this joint distribution as the Gaussian

p(f |Dn,C1,C2) ≈
∫
p(f |z,Dn,C1) q(z) dz = N (f |mf ,Vf ) . (8)

The required quantities are similar to the ones used by EP to make predictions in the Gaus-
sian process binary classifier [12]. We can then incorporate C3 by multiplying N (f |mf ,Vf )
with a factor that guarantees f(x) < f(x?) and using a similar approximation as above. The
predictive distribution for f(x) given x? can then be read off from the resulting Gaussian ap-
proximation resulting in variance vn(x|x?). This leads to the final form of our approximation,
H[p(y|Dn,x,x?)] ≈ 0.5 log[2πe(vn(x|x?) + σ2)].

3 Experiments

First, we analyze the accuracy of PES in the task of approximating the differential entropy (1).
We compare the PES approximation (3), with the approximation used by the entropy search (ES)
method [4]. We also compare with the ground truth for (1) obtained using a rejection sampling (RS)
algorithm based on (2). For this experiment we generate the data Dn using an objective function f
sampled from the Gaussian process prior as in [4]. We fix M = 200 and m = 1000. The plots in
Figure 1 show that the PES approximation to (1) is more similar to the ground truth given by RS
than the approximation produced by ES. In this figure we also see a discrepancy between RS and
PES at locations near x = (0.572, 0.687). This difference is an artifact of the discretization used in
RS. By zooming in and drawing many more samples we would see the same behavior in both plots.

We now evaluate the performance of PES in the task of finding the optimum of synthetic black-box
objective functions. In this experiment we optimize objective functions defined in the 2-dimensional
unit domain X = [0, 1]2. Each objective function is generated by first sampling 1024 function
values from a known GP prior and defining the the objective function by the resulting GP posterior
mean. We generated a total of 1000 objective functions by following this procedure. In these
experiments we compared the performance of PES with that of ES [4] and expected improvement
(EI) [8]. Predictive performance is measured in terms of the immediate regret (IR) |f(x̃n)−f(x?)|,
where x̃n is the recommendation of each algorithm had we stopped at step n—for all methods this is
given by the maximizer of the posterior mean. The right plot in Figure 2 shows the decimal logarithm
of the median of the IR obtained by each method across the 1000 different objective functions.
Confidence bands equal to one standard deviation are obtained using the bootstrap method.
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Figure 1: Comparison of different estimates of αn(x) . Left, ground truth obtained by the rejection sampling
method RS. Middle, approximation produced by ES. Right, approximation produced by PES.
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Figure 2: Left, example of objective functions f . Right, median of the immediate regret (IR) for the methods
PES, ES and EI in the experiments with synthetic objective functions.

We finally optimize several real-world cost functions. These examples optimize (NNet) the hyper-
parameters of a neural network; (Hydrogen) the hydrogen production of a particular bacteria with
respect to its growth medium [3]; (Portfolio) the Sharpe ratio of 1-year returns generated by simula-
tion of a multivariate time-series model [7]; and the speed of a bipedal robot [15] under (Walker A)
noiseless and (Walker B) noisy observations.

4 Conclusions

We have proposed a novel information-theoretic approach for Bayesian optimization, PES, which
maximizes the one-step information gain over the optimizer. We show that PES produces more
accurate approximations than ES and our experiments show that it can more easily marginalize over
hyperparameters. Experiments with synthetic and real-world functions also show that PES often
outperforms ES as well as EI, another popular Bayesian optimization technique. Overall, this work
shows that PES provides an attractive, efficient formalism for Bayesian optimization.
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Figure 3: Median of the immediate regret (IR) for the methods PES, PES-NB, ES and EI in the experiments
with non-analytic real-world cost functions.
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