
Modular mechanisms for Bayesian optimization

Matthew W. Hoffman
mwh30@cam.ac.uk

University of Oxford, United Kingdom

Bobak Shahriari
bshahr@cs.ubc.ca

University of British Columbia, Canada

Abstract

The design of methods for Bayesian optimization involves a great number of
choices that are often implicit in the overall algorithm design. In this work we
argue for a modular approach to Bayesian optimization and present a Python im-
plementation, pybo, that allows us to easily vary these choices. In particular this
includes selection of the acquisition function, kernel, and hyperpriors as well as
less-discussed components such as the recommendation and initialization strate-
gies. Ultimately this approach provides us a straightforward mechanism to exam-
ine the effect of each choice both individually and in combination.

1 Introduction

Bayesian optimization is fast becoming a significant sub-topic in machine learning, particularly
when applied to the problem of hyperparameter tuning. However, as more methods for Bayesian
optimization are developed it becomes increasingly important to properly compare these tech-
niques and analyze their various strengths and weaknesses. See, for example, the recent work of
Eggensperger et al. which examines the performance of three packages widely-used for hyperpa-
rameter optimization [4]. One downside of this approach, though, is the way in which this earlier
work treats each method as a single, monolithic optimization technique.

Modern approaches for Bayesian optimization are instead built on a number of different modular
components. Minimally these include

• any initial allocation of points;

• the choice of infill or acquisition function;

• the method used to optimize the acquisition function;

• the choice of posterior model—for Gaussian process (GP) models this includes the choice
of kernel and likelihood models; and

• the method of final recommendation (i.e. the point deemed optimal).

These choices are also often parameterized, which greatly expands the number of possible compo-
nents. Additionally, for GP posteriors it is well known that a single setting of hyperparameters is
prone to overfitting given small amounts of data [17]. This introduces additional components corre-
sponding to (i) the choice of hyperpriors and (ii) the method used for hyperparameter marginaliza-
tion. It is also often the case that no single selection of these components is optimal even within the
same run [9], although we will not elaborate on this problem here.

Instead, in this work we propose a modular approach for Bayesian optimization which we have
implemented as a Python library which we call pybo. In pybo each of the components outlined
above can easily be modified or replaced in order to experiment with different combinations. This
in turn allows us to examine the effect on performance as sets of components are varied.

1



Algorithm 1 Modular Bayesian Optimization

Input: a black-box function f̃ : X → Y
1: {x1, . . . ,xi} ← INITSAMPLES(X ) initial queries which supplement the policy
2: M← INITMODEL({x1, . . . ,xi}) the prior/posterior model
3: for n = i+ 1, . . . do
4: αn ← GETPOLICY(M, n) the acquisition function
5: xn ← OPTIMIZE(αn) optimize the acquisition function
6: yn ← f̃(xn)
7: M← ADDDATA(M,xn, yn) update the model given new data, possibly

marginalizing over any hyperparameters
8: end for
9: return RECOMMEND(M) return the recommended optimizer

2 Modular Bayesian optimization

In the setting of Bayesian optimization we are interested in solving optimization problems of the
form x? = argmaxx∈X f(x) via queries to some noisy, black-box function f̃ . In this section we
outline our modular approach to this problem. General pseudocode for this approach is given by
Algorithm 1 which takes as input f̃ and returns a recommendation for x?.

In this work we assume a probabilistic approach to global optimization utilizing a model—initialized
on Line 2—which sequentially constructs a Bayesian posterior of the function f . The model, de-
notedM in the pseudocode, must provide a consistent interface to enable its use in a wide variety
of acquisition/recommendation strategies. These include

• GETQUANTILE(M,x, q) for evaluating the marginal posterior quantiles at a given input;
• GETMOMENTS(M,x) for evaluating the marginal posterior moments at a given input;
• SAMPLE(M) for sampling a function from the posterior—for non-parametric models this

can be performed either via lazy-evaluation or a closed-form approximation [see 8, 16];
• ADDDATA(M,x, y) is used after each new observation.

In pybo we assume a GP model consisting of a likelihood, kernel, mean, and parameters for each
associated sub-component, although alternative models could easily be incorporated. Sparse GP
approximations [15] are also implemented for efficiency. Hyperparameters can be fixed or a meta
model can be used which offers the same external interface described above, but marginalizes a pa-
rameterized model given a set of hyperpriors. Meta models in pybo are currently implemented for
MCMC and SMC using this interface, but it also easily allows for arbitrary methods of integration
such as the marginal GP [6]. Kernels can be given as arbitrary sums/products of base kernel ob-
jects (e.g. Matern, squared-exponential). Finally, here we assume Gaussian likelihood, although the
facility exists to replace these with non-Gaussian models (e.g. Student’s t, logistic).

Before initializing the model it is also often desirable to perform a separate initial sampling of the
state-space, as in Line 1 of the pseudocode. For example, the EGO algorithm of Jones et al. rec-
ommends an initial design using Latin hypercube sampling [12]. Other approaches include random
sampling (uniform or otherwise) or quasi-random sampling via Sobol or Halton sequences [3].

Given an initial model we can then proceed to generate a policy for selecting the next query location.
This is done in line 4 of Algorithm 1 which constructs an index policy or acquisition function given
the current posterior and the number of past queries. The dependence of the policy on n is important
for approaches such as GP-UCB [18] or many models that are expected to run indefinitely and
aim for low regret. Other possible implementations of this component include the probability of
improvement (PI) [13], expected improvement (EI) [14, 12], Thompson sampling [19], or mixtures
of different acquisitions [9, 16]. See also [16] for an efficient implementation of Thompson sampling
in continuous models.

Given an acquisition function αn the next query location is selected as the result of OPTIMIZE(αn).
Implementations of this component in pybo include global optimization techniques such as DI-
RECT [11] or multi-restart versions of local-optimization techniques such as L-BFGS-B [2]. Alter-

2



0 10 20 30 40 50 60 70 80 90

0.2

0.4

0.6

0.8

1.0

1.2

G
P
M

o
d
e
l3

F
u
n
ct

io
n
 v

a
lu

e

PI

Middle

Latin

Sobol

Uniform

0 10 20 30 40 50 60 70 80 90

Iterations

EI

0 10 20 30 40 50 60 70 80 90

UCB

Figure 1: Effect of initialization on optimizing sample functions.

natively this component may initialize a datastructure to be used between repeated invocations of
the optimization method—e.g. a dynamically growing grid [17] or tree [20].

Finally, after N iterations a recommendation must be returned. A common practice is to return the
best point observed, however in order to accomodate noisy outputs we can also return those with
the highest expected value. Alternatively, rather than restricting ourselves to the observed inputs we
can consider maximizing the posterior mean over the entire input space. Additionally, while in this
work we only consider halting after a fixed horizon N , stopping criterion based on the confidence of
the recommendation can also be easily incorporated. See for example the discussion in [10] based
on work of [5].

3 Experiments

In this section we vary a subset of the components used in Bayesian optimization and view the
effect this variation has on performance. The experiments given in this section provide just a limited
overview of the types of experiments that can be performed with pybo. Varying these components
can be done by passing keyword arguments to a solution method called solve bayesopt as
follows

gp = ExactGP(likelihood=Gaussian(sigma),
kernel=SE(ell, sf2))

xstar, _ = solve_bayesopt(f, bounds, model=gp, init=’latin’,
policy=’ucb’, solver=’lbfgs’,
recommender=’latent’)

where gp defines a prior model and implementing the model interface defined earlier. Here the
hyperparameters are assumed fixed, but marginalization can also be performed using additional
inference and priors keywords. Note, however, that reasonable defaults exist for all of these
components such that solve bayesopt(f, bounds) can be called.

We first consider the effect of initialization. The initializations considered include (quasi-) random
samplings of the space and an approach which samples a single point in the midpoint of the bounded
space. In Figure 1 this behavior is shown across 3 different acqusition functions, while optimizing
functions sampled from a known GP prior. Here we see that for the for the PI and EI acquisition
functions a Sobol sequence initialization tends to give the best performance, however for GPUCB
the midpoint initialization is also competitive.

Next, we consider the effect of kernel choice on two global optimization test functions, namely
Branin and Gramacy [see 1, 7]. Here we consider 4 ARD kernels: three from the Matérn family
and the squared-exponential. Results are shown in Figure 2. Note that MCMC was used to integrate
over the hyperparameters of these kernels, thus controlling the effect of the ARD parameters. Here
we see that for the smoother Branin function the Matern5 and squared-exponential perform best,
however on the Gramacy function the comparatively spikier Matérn1 exhibits better performance.

3



0 5 10 15 20 25 30

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

G
ra

m
a
cy

F
u
n
ct

io
n
 v

a
lu

e

PI

Matern5

Matern3

SE

Matern1

0 5 10 15 20 25 30

EI

0 5 10 15 20 25 30

UCB

0 10 20 30 40 50 60

10-4

10-3

10-2

10-1

100

B
ra

n
in

A
b
so

lu
te

 e
rr

o
r

0 10 20 30 40 50 60

Iterations
0 10 20 30 40 50 60

Figure 2: Effect of kernel choice on the Gramacy (top) and Branin (bottom) test functions.

0 5 10 15 20 25 30

Iterations

−0.6

−0.4

−0.2

0.0

0.2

0.4

F
u
n
ct

io
n
 v

a
lu

e

Gramacy

Observed

Latent

Incumbent

0 10 20 30 40 50 60

Iterations

10-5

10-4

10-3

10-2

10-1

100

101

A
b
so

lu
te

 e
rr

o
r

Branin

Figure 3: Effect of recommendation strategy on the Gramacy (left) and Branin (right) test functions.

Finally, we consider the effect of recommendation strategy on the same functions. The different
strategies correspond to whether the latent posterior mean is optimized, or if either the highest in-
cumbent or observation is returned. Figure 3 shows results with the EI acquisition function. Surpris-
ingly, here we see that on the more multi-modal problem (Gramacy) returning the highest observa-
tion gives better performance, whereas better results are obtained by optimizing the latent function
on Branin.

4 Conclusion

In this work we describe a modular approach for Bayesian optimization, and pybo, a Python pack-
age which facilitates comparing arbitrary combinations of these modular components. We also
briefly examine a number of variations on its use as a mechanism for evaluating algorithmic ap-
proaches for probabilistic global optimization. Further work with this approach involves a more
detailed study of the various combinations of sub-components for Bayesian optimization, which are
necessarily outside the scope of this work. Finally, we see modular approaches of this kind as a
step towards more fully automating this procedure—once we can evaluate the efficacy of different
combinations we can begin the process of algorithmically selecting between these components.

4



References
[1] E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive

cost functions, with application to active user modeling and hierarchical reinforcement learn-
ing. Technical Report UBC TR-2009-23 and arXiv:1012.2599v1, Dept. of Computer Science,
University of British Columbia, 2009.

[2] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained
optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208, 1995.

[3] J. Dick, F. Y. Kuo, and I. H. Sloan. High-dimensional integration: The quasi-Monte Carlo way.
Acta Numerica, 22:133–288, 2013.

[4] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-Brown.
Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In
the NIPS Workshop on Bayesian Optimization, 2013.

[5] V. Gabillon, M. Ghavamzadeh, and A. Lazaric. Best arm identification: A unified approach to
fixed budget and fixed confidence. In Neural Information Processing Systems, 2012.

[6] R. Garnett, M. A. Osborne, and P. Hennig. Active learning of linear embeddings for Gaussian
processes. In Uncertainty in Artificial Intelligence, 2014.

[7] R. B. Gramacy and H. K. Lee. Cases for the nugget in modeling computer experiments. Statis-
tics and Computing, 22(3):713–722, 2012.

[8] J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani. Predictive entropy search
for efficient global optimization of black-box functions. In Neural Information Processing
Systems, 2014.

[9] M. W. Hoffman, E. Brochu, and N. de Freitas. Portfolio allocation for Bayesian optimization.
In Uncertainty in Artificial Intelligence, pages 327–336, 2011.

[10] M. W. Hoffman, B. Shahriari, and N. de Freitas. On correlation and budget constraints in
model-based bandit optimization with application to automatic machine learning. In the Inter-
national Conference on Artificial Intelligence and Statistics, pages 365–374, 2014.

[11] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without the
lipschitz constant. Journal of Optimization Theory and Applications, 79(1):157–181, 1993.

[12] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-
box functions. Journal of Global optimization, 13(4):455–492, 1998.

[13] H. Kushner. A new method of locating the maximum of an arbitrary multipeak curve in the
presence of noise. Journal of Basic Engineering, 86, 1964.

[14] J. Močkus, V. Tiesis, and A. Žilinskas. The application of Bayesian methods for seeking the
extremum. In L. Dixon and G. Szego, editors, Toward Global Optimization, volume 2. Elsevier,
1978.

[15] J. Quiñonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate gaussian
process regression. The Journal of Machine Learning Research, 6:1939–1959, 2005.

[16] B. Shahriari, Z. Wang, M. W. Hoffman, A. Bouchard-Côté, and N. de Freitas. An entropy
search portfolio for bayesian optimization. arXiv:1406.4625, 2014.

[17] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning
algorithms. In Neural Information Processing Systems, pages 2960–2968, 2012.

[18] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimization in the
bandit setting: No regret and experimental design. In the International Conference on Machine
Learning, 2010.

[19] W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3-4):285–294, 1933.

[20] Z. Wang, B. Shakibi, L. Jin, and N. de Freitas. Bayesian multi-scale optimistic optimization.
In the International Conference on Artificial Intelligence and Statistics, 2014.

5


