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Abstract

As machine learning outside of academic settings becomes commonplace,
Bayesian optimization is rapidly becoming an attractive method for practitioners
to automate the process of classifier hyper-parameter tuning. Much practical data,
such as genetic predisposition, personal email statistics, and car accident history,
if not properly private, may be at risk of being inferred from Bayesian optimiza-
tion outputs. To address this, we introduce methods for releasing the best hyper-
parameters and classifier accuracy privately. Leveraging the strong theoretical
guarantees of differential privacy and known Bayesian optimization convergence
bounds, we prove that these private quantities are also near-optimal.

1 Introduction

Machine learning is increasingly used in application areas with sensitive data. For example hospitals
use machine learning to predict if a patient is likely to be readmitted soon (Yu et al., 2013), webmail
providers classify spam emails from non-spam (Weinberger et al., 2009) and insurance providers
forecast the extent of bodily injury in car crashes (Chong et al., 2005). In these scenarios data cannot
be shared legally, but companies and hospitals may want to pool resources and share model specifi-
cations, hyper-parameters and validation accuracies through publications or other means. However,
data-holders must be careful as even little amounts of information can compromise privacy. Which
hyper-parameter setting yields highest accuracy can reveal sensitive information about individuals
in the validation or training data set, reminiscent of reconstruction attacks in Dinur & Nissim (2003).

In this paper we develop an algorithm that automatically tunes the hyper-parameters of a machine
learning algorithm using Bayesian optimization (Hutter et al., 2011; Bergstra & Bengio, 2012; Snoek
et al., 2012; Hoffman et al., 2014; Shah et al., 2014) while provably preserving differential pri-
vacy (Dwork et al., 2006b). A practitioner can use our approach to efficiently find near-optimal
hyper-parameters and safely share them without compromising sensitive information. Our privacy
guarantees hold for releasing the best hyper-parameters and best validation accuracy. In fact, all of
our results hold for the general setting of optimizing an expensive (possibly nonconvex) objective
function using Bayesian optimization. Specifically our contributions are as follows: (a) we derive, to
the best of our knowledge, the first framework for Bayesian optimization with provable differential
privacy guarantees; and (b) we develop variations with and without measurement noise.

2 Background

In general, our aim will be to protect the privacy of a dataset of sensitive records D ⊆ S (where S
is the collection of all possible records) when the results of Bayesian optimization depends on D.

Bayesian optimization. Consider the task of maximizing an unknown function fD : X → R :

max
x∈X

fD(x). (1)
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that depends on some dataset D ⊆ S . Throughout, we use the vocabulary of a common application:
that of machine learning hyper-parameter tuning. In this case fD(x) is the accuracy of a learning
algorithm evaluated on validation dataset D that was trained with hyper-parameters x ∈ X ⊆ Rd.

Bayesian optimization selects a small number of locations to sample fD: [x1, . . . ,xT ] = XT to
optimize (1). Specifically, given a current sample xt, we observe a function evaluation (accuracy) yt
such that yt = fD(xt)+αt, where αt ∼ N (0, σ2) is Gaussian noise with possibly non-zero variance
σ2. One well-known procedure to select hyper-parameters x maximizes the upper-confidence bound
of a posterior Gaussian process (GP) surrogate of fD (Auer et al., 2002; Srinivas et al., 2010):

xt+1 , arg max
x∈X

µt(x) +
√
βt+1σt(x), (2)

where µt(x) and σt(x) are the GP posterior mean and standard deviation after t samples (Rasmussen
& Williams, 2006). Additionally βt+1 is a parameter that trades off the exploitation of maximizing
µt(x) and the exploration of maximizing σt(x). Srinivas et al. (2010) proved that given certain
assumptions on fD and fixed, non-zero observation noise (σ2 > 0), selecting hyper-parameters x

to maximize eq. (2) is a no-regret Bayesian optimization procedure: limT→∞
1
T

∑T
t=1 fD(x∗) −

fD(xt) = 0, where fD(x∗) is the maximizer of eq. (1). For the no-noise setting, de Freitas et al.
(2012) give a no-regret algorithm that maximizes eq. (2) as a subroutine.

The primary question this work aims to answer is: given x̂ , arg maxt≤T fD(xt), how can we
release private versions of x̂ and fD(x̂) that are close to x∗ and fD(x∗)?

Setting. To answer this question, let us define a GP over hyper-parameters x,x′ ∈ X and datasets
D,D′ ∈ S as follows: GP

(
0, k1(D,D′) ⊗ k2(x,x′)

)
. A prior of this form is a multi-task GP

(Bonilla et al., 2008; Swersky et al., 2013). The function k1(D,D′) defines a set kernel (e.g.,
the number of records that differ between D and D′). For k2, we focus on the squared expo-
nential: k2(x,x′) = exp

(
−‖x−x′‖22/(2`2)

)
or Matérn kernels: (e.g., k2(x,x′) = (1+

√
5r/`+

(5r2)/(3`2)) exp(−
√

5r/`), for r= ‖x−x′‖2), for a fixed `, as they have known GP information
gain bounds (Srinivas et al., 2010). As defined, the kernels k2 are normalized (i.e., k2(x,x) = 1).

Assumption 1. We have a maximization problem of type eq. (1), where all possible dataset functions
[f1, . . . , f2|S| ] are Gaussian process distributed GP

(
0, k1(D,D′)⊗k2(x,x′)

)
for allD,D′ ∈ S and

x,x′ ∈ X , where |X | <∞.

Similar Gaussian process assumptions have been made in previous work (Srinivas et al., 2010).
Differently, the dataset kernel k1 additionally ensures that functions drawn from the GP change
smoothly as the dataset is changed (similar to the stability assumptions of Chaudhuri & Vinterbo
(2013)). For a result in the no-noise observation setting, we will make use of the assumptions of
de Freitas et al. (2012) for our privacy guarantees, as described in Section 4.

Differential Privacy. One of the most theoretically sound frameworks for private data release is
differential privacy (Dwork et al., 2006b), which has been shown to be robust to a variety of privacy
attacks (Ganta et al., 2008; Sweeney, 1997; Narayanan & Shmatikov, 2008). Given an algorithm A
that outputs a value x when run on dataset D, the goal of differential privacy is to ‘hide’ the effect
of a small change in D on the output of A. Note that any non-trivial private algorithm must include
some amount of randomness to guarantee such a change in D is unobservable in the output x of A
(Dwork & Roth, 2013). Formally, the definition of differential privacy is stated below.

Definition 1. A randomized algorithm A is (ε, δ)-differentially private for ε, δ ≥ 0 if for all x ∈
Range(A) and for all neighboring datasets D,D′ (i.e., D and D′ differ in one record) we have that

Pr
[
A(D) = x

]
≤ eε Pr

[
A(D′) = x

]
+ δ. (3)

The parameters ε, δ guarantee how private A is; the smaller, the more private. If δ = 0, we say the
algorithm is simply ε-differentially private. For a survey on differential privacy see Dwork & Roth
(2013). Two popular methods for making an algorithm ε-differentially private are: (a) the Laplace
mechanism (Dwork et al., 2006b), in which we add random noise to x and (b) the exponential
mechanism (McSherry & Talwar, 2007), which draws a random output x̃ such that x̃ ≈ x. For each
mechanism we define the global sensitivity, describing how much A changes when D changes.
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Definition 2. (Laplace mechanism) The global sensitivity of an algorithm A over all neighboring
datasets D,D′ (i.e., D,D′ differ in one record) is: ∆A , maxD,D′∈S ‖A(D)−A(D′)‖1.
(Exponential mechanism) The global sensitivity of a function q : S × X → R over all possible
neighboring datasets D,D′ is: ∆q , maxD,D′∈S;x∈X ‖q(D,x)− q(D′,x)‖1.
Definition 3. Given a dataset D and algorithm A, the Laplace mechanism returns A(D) + ω,
where ω is noise drawn from Lap(∆A/ε), the Laplace distribution with scale ∆A/ε (location 0).
Definition 4. Given a dataset D and algorithm A(D) = arg maxx∈X q(D,x), the exponential
mechanism returns x̃ drawn from distribution 1

Z exp
( εq(D,x)

2∆q

)
, where Z is a normalizing constant.

We now describe our method for privately releasing the best hyper-parameters and validation accu-
racies from Bayesian optimization. Due to space limits we defer all proofs to the full paper version.

3 With observation noise

Observation noise occurs in many real-world modeling settings such as sensor measurement predic-
tion (Krause et al., 2008). Our algorithm makes use of (Srinivas et al., 2010) and reports private
Bayesian optimization quantities. In all sections that follow, for notational simplicity we will occa-
sionally omit the subscript D for quantities: y, f, µ, σ2 (similarly, for D′: y′, f ′, µ′, σ′2).

3.1 Private near-maximum x

We guarantee that releasing x̃ is private (Corollary 1) and that it is near-optimal (Theorem 2). We
first derive the global sensitivity of µT (x) with probability at least 1−δ. Then we will show show
that releasing x̃ via the exponential mechanism is (ε, δ)-differentially private. Finally, we prove that
µT (x̃) is close to f(x∗), the true maximizer of eq. (1). The global sensitivity of µT (x) is bounded:
Theorem 1. Given assumption 1, for any two neighboring datasets D,D′ and for all x ∈ X with
probability at least 1− δ we have the upper bound on the global sensitivity of µT :

|µ′T (x)− µT (x)| ≤ 2
√
βT+1 + σ1

√
2 log (3|X |/δ),

for σ1 =
√

2
(
1−k1(D,D′)

)
, βt=2 log

(
|X |t2π2/(3δ)

)
.

Algorithm 1 Private BO (noisy)
Input: D; X ; T ; (ε, δ); σ2

D,0; γT ; µD,0 =0
for t = 1 to T do
βt=2 log(|X |t2π2/(3δ))
Select xt using eq. (2)
Observe yD,t, given xt
Update µD,t and σ2

D,t
end for
c=2

√(
1−k(D,D′)

)
log
(
3|X |/δ

)
q=σ

√
4 log(3/δ)

C1 = 8/ log(1 + σ−2)

Draw x̃ ∈ X w.p. Pr[x]∝exp
(

εµD,T (x)

2(2
√
βT+1+c)

)
y∗=maxt≤T yD,t

Draw θ ∼Lap
[√

C1βT γT
ε
√
T

+ c
ε + q

ε

]
ỹ = y∗ + θ
return x̃, ỹ

This global sensitivity bound implies that the
exponential mechanism guarantees privacy:
Corollary 1. LetA(D) denote Algorithm 1 ap-
plied on dataset D. Given assumption 1, the
quantity x̃ is (ε, δ)-differentially private, i.e.,

Pr
[
A(D) = x̃

]
≤ eε Pr

[
A(D′) = x̃

]
+ δ

for any pair of neighboring datasets D,D′.

We show that even though we release a noisy
hyper-parameter setting x̃, it is near-optimal.
Theorem 2. Given assumption 1 the near-
optimal guarantee for releasing x̃ holds:

µT (x̃) ≥ f(x∗)− 2
√
βT − q −

2∆

ε
(log |X |+ a)

w.p.≥ 1− (δ+ e−a), where ∆ = 2
√
βT+1 + c

(for βT+1, c, and q defined as in Algorithm 1).

3.2 Private near-maximum y

We show releasing ỹ via the Laplace mechanism is (ε, δ)-differentially private (Theorem 3) and that
ỹ is close to f(x∗) (Theorem 4). We bound global sensitivity of the maximum y as such:
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Theorem 3. Given assumption 1, the sensitivity bound for the maximum y holds w.p. at least 1− δ:

|max
t≤T

y′t −max
t≤T

yt| ≤
√
C1βT γT√

T
+ c+ q.

where the maximum Gaussian process information gain γT is bounded above for the squared expo-
nential and Matern kernels (Srinivas et al., 2010).

Given bound on the sensitivity of the maximum y, the Laplace mechanism yields a private algorithm:
Corollary 2. Let A(D) denote Algorithm 1 run on dataset D. Given assumption 1, releasing ỹ is
(ε, δ)-differentially private, i.e.,

Pr[A(D) = ỹ] ≤ eε Pr[A(D′) = ỹ] + δ.

Further, ỹ, despite being a noisy maximum is close to f(x∗):
Theorem 4. Given the assumptions of Theorem 1, we have the following bound,

|ỹ − f(x∗)| ≤
√

2 log(2T/δ) +
Ω

T
+ a

(
Ω

εT
+
c

ε
+
q

ε

)
,

with probability at least 1− (δ + e−a) for Ω =
√
C1TβT γT .

Because releasing either x̃ or ỹ is (ε, δ)-differentially private, releasing both private quantities in
Algorithm 1 guarantees (2ε, 2δ)-privacy for validation dataset D (due to the composition properties
of (ε, δ)-differential privacy (Dwork et al., 2006a)).

4 Without observation noise Algorithm 2 Private BO (noise free)
Input: D; X ⊆ Rd; T ; (ε, δ); A, τ ; assump-
tions on fD in de Freitas et al. (2012)
Run method of de Freitas et al. (2012),
resulting in noise free observations:
fD(x1), . . . , fD(xT )

c = 2
√(

1− k(D,D′)
)

log(2|X |/δ)

Draw θ ∼ Lap
[
A
ε e
− 2τ

(log 2)d/4 + c
ε

]
return f̃ = max2≤t≤T fD(xt) + θ

If we can observe function evaluations exactly:
yD,t = fD(xt) note that we can use the same
algorithm to report a private maximum x as
above. Theorems 1 and 2 still hold (note q = 0
in Theorem 2). However, as γT approaches in-
finity as σ2 → 0 we extend results from the
previous section to the exact observation case
via the regret bounds of de Freitas et al. (2012).

4.1 Private near-maximum f

We show that releasing f̃ is private (Corollary 3) and that f̃ is nearly f(x∗) (Theorem 6). The global
sensitivity of the maximum f is:
Theorem 5. Given assumption 1 and the assumptions de Freitas et al. (2012), Theorem 2,

| max
2≤t≤T

f ′(xt)− max
2≤t≤T

f(xt)| ≤ Ae
− 2τ

(log 2)d/4 + c

w.p. at least 1− δ for c=2
√(

1−k(D,D′)
)

log(2|X |/δ).

Now we apply the Laplace mechanism to release f̃ .
Corollary 3. Let A(D) denote Algorithm 2 run on dataset D. Given assumption 1 and that f
satisfies the assumptions of de Freitas et al. (2012), f̃ is (ε, δ)-differentially private, i.e.,

Pr
[
A(D) = f̃

]
≤ eε Pr

[
A(D′) = f̃

]
+ δ.

Theorem 6. Given the assumptions of Theorem 5, we have the utility guarantee for Algorithm 2:

|f̃ − f(x∗)| ≤ Ω + a
(Ω

ε
+
c

ε

)
w.p. at least 1−(δ + e−a) for Ω=Ae

− 2τ

(log 2)d/4 .

Thus, our private maximum f̃ is near-optimal. We have introduced methods for privately releasing
the best hyper-parameters and validation accuracies in the case of exact and noisy observations. We
believe we are the first to demonstrate differentially private quantities in the setting of global opti-
mization of expensive (possibly nonconvex) functions, through the lens of Bayesian optimization.
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