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Abstract

In this paper, we consider the problem of stochastic optimization under a bandit
feedback model. We generalize the GP-UCB algorithm [Srinivas and al., 2012] to
arbitrary kernels and search spaces. To do so, we use a notion of localized chaining
to control the supremum of a Gaussian process, and provide a novel optimization
scheme based on the computation of covering numbers. The theoretical bounds we
obtain on the cumulative regret are more generic and present the same convergence
rates as the GP-UCB algorithm. Finally, the algorithm is shown to be empirically
more efficient than its natural competitors on simple and complex input spaces.

1 Introduction

Optimizing an unknown and noisy function is at the center of many applications in the field of ma-
chine learning [1]. The goal of a sequential optimization procedure may be either seen as maximiz-
ing the sum of the outputs (or rewards) received at each iteration, that is to minimize the cumulative
regret widely used in bandit problems, or as maximizing the best reward received so far, that is to
minimize the simple regret. This task becomes challenging when we only have mild information
about the unknown function. To tackle this challenge, a Bayesian approach has been shown to be
empirically efficient [2, 3, 4, 5, 6]. In this approach, we model the unknown function as a realization
of a Gaussian Process (GP) which allows to control the assumptions we put on the smoothness of
the function by choosing different kernels [7]. In order to prove theoretical guarantees on the re-
gret, algorithms in the literature typically rely on high probabilistic upper confidence bounds (UCB)
[8, 9, 10, 11, 12]. In these works and many others, the UCB is obtained with a union bound over
all the points of a discretization of the input space. The major drawback of this approach is that the
UCB depends on the cardinality of the discretization instead of the complexity of the input space
itself. As a consequence, the convergence rates derived on the regret become arbitrary large when
the discretization becomes finer and finer. Aiming at filling this gap between theory and practice we
propose an efficient computation of chaining for Bayesian Optimization. Chaining, that has been
recently studied in the context of sequential optimization (see [13] for bandit with known horizon
or [14] in the case of online regression), appears to be an ideal tool to capture the complexity of
the search space with respect to the smoothness of the function. The contribution of this paper is
twofold: we first introduce a novel policy based on the computation of covering numbers called the
CHAINING-UCB that can be seen as a generalization of the GP-UCB algorithm with automatic
calibration of the exploration/exploitation tradeoff for arbitrary kernels and search space. On the
other hand, we provide theoretical guarantees on its regret with the same convergence rates as its
competitors, without depending on the cardinality of the discretization of the search space. The rest
of the paper is organized as follows: in Section 2, we present the framework of our analysis, the ba-
sic properties of GP and we introduce the CHAINING-UCB algorithm. In Section 3, we present and
discuss the upper bound on the regret. Finally in Section 4 we compare the empirical performances
of the CHAINING-UCB algorithm to its natural competitors on simple input spaces, that is RD, and
complex input spaces, this is directed graphs space.
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Algorithm 1: CHAINING-UCB(X , k(·, ·), η, δ)
for t = 1, 2, . . . do

Compute µt, σt and dt
T0 ← ∅; σmin

t = minx∈X σt(x)

for i = 1 . . . d1− log2(σmin
t )e do

εi ← 2−i+1

X̄ ← {x ∈ X : dt(x, Ti−1) > εi}
Ti ← Ti−1 ∪ COVER(X̄ , dt, εi)

Hi ← εi

√
2 log

(
(|Ti|+ 1)i2t2 π

4

δ62

)
end
xt ← argmax

x∈X
µt(x) +

∑
i:σmin

t ≤εi<σt(x)

Hi

Sample xt and observe yt
end

Algorithm 2: GREEDY-COVER(X , d, ε)
T ← ∅; X̄ ← X
∀x, x′ ∈ X , G[x, x′]← 1d(x,x′)≤ε
while X̄ 6= ∅ do

x← argmaxx∈X̄
∑
x′∈X̄ G[x, x′]

T ← T ∪ {x}
X̄ ← X̄ \ {x′ ∈ X̄ : G[x, x′] = 1}

end
return T

2 The CHAINING-UCB algorithm

Bayesian optimization framework. Let f : X → R be the unknown function we want to op-
timize, where X is the input space which is not necessarily a subset of RD. We assume that f is
a realization of a centered Gaussian process with known kernel k satisfying k(x, x′) ≤ 1 for all
(x, x′) ∈ X 2. To avoid measurability issues we suppose that X is a finite set with arbitrary cardi-
nality (see [15, 16] for more details), and we do not address the computational problem of handling
continuous spaces. A sequential optimization algorithm iterates two steps: it first chooses xn based
on y1, . . . , yn−1, and next gets the noisy observation yn = f(xn) + εn where (εn)n≥1 are indepen-
dent Gaussians N (0, η2) with known variance η2. Let Xn = {x1, . . . , xn} be the set of queried
points after n iterations and Yn = [y1, . . . , yn] the associated observations packed in vector form.
Unlike the work of [13] this paper considers that the time horizon n is unknown. For GP, the dis-
tribution of f conditioned on Yn is a non-centered GP of mean µn+1 and kernel kn+1 computed as
follows for all (x, x′) ∈ X 2:

µn+1(x) = kn(x)>C−1
n Yn and kn+1(x, x′) = k(x, x′)− kn(x)>C−1

n kn(x′) , (1)

where kn(x) = [k(xt, x)]xt∈Xn
is the kernel vector between x and Xn, and Cn = Kn + η2I with

Kn = [k(xt, xt′)]xt,xt′∈Xn
the kernel matrix [7]. We also define the variance σ2

n(x) = kn(x, x)
and the pseudo-distance dn(x, x?) :

dn(x, x?) =
√
σ2
n(x?)− 2kn(x, x?) + σ2

n(x) . (2)

Note that d2
n(x, x?) = Var[f(x?) − f(x) |Xn,Yn]. To measure the complexity of X we will

compute covering numbers with respect to dn.

An upper confidence bound algorithm via chaining. At the core of our strategy to control the
regret of the algorithm we need an upper confidence bound (UCB) on supx?∈X f(x?)− f(x) for all
x ∈ X . A naive approach uses a union bound onX , resulting in a factor

√
log |X | in the UCB, which

is not appropriate when X is a numerical discretization of a continuous space, typically a multi-
dimensional grid of high density. We use the chaining trick [17, 18, 19] to get a UCB relying on the
covering numbers of X with respect to dn instead of its cardinality. In that way the algorithm adapts
to arbitrary input spaces. The main element of our algorithm is the computation of hierarchical
ε-covers of X . We say that a subset T is an ε-cover of X when for all x ∈ X , dn(x, T ) ≤ ε,
where dn(x, T ) = infx′∈T dn(x, x′). The covering numbers N(X , dn, ε) are the cardinality of the
smallest ε-cover of X for the pseudo-distance dn, and the function COVER(X , dn, ε) in Algorithm 1
returns such a set. The CHAINING-UCB algorithm then queries the objective function at the point
maximizing the UCB obtained by chaining. The computation of an optimal ε-cover is NP-hard, but
we can easily build an efficient approximation as shown in Algorithm 2 and discussed in Section 4.
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Figure 1: Illustration of the exploration/exploitation tradeoff maximized in Algorithm 1. The red
crosses are the noisy observations. The plain black line is the posterior mean µ. The dashed green
line is the target of the CHAINING-UCB algorithm. The dotted blue line is the target used by the
GP-UCB algorithm. Remark that the rectangular form is explained by the discrete sum.

3 Theoretical analysis

Guarantees on the regret. In the following theorem we provide a high probabilistic upper bound
on the instantaneous regret incurred by Algorithm 1 in terms of the posterior deviations σn(xn) and
covering numbers. This inequality is used in the subsequent corollary to obtain upper bounds on its
cumulative and simple regrets.
Theorem 1. For any finite X , let x1, x2, . . . be the queries of the CHAINING-UCB algorithm on f
sampled from a GP(0, k) where k(·, ·)≤ 1. For δ ∈ (0, 1), using the notations σn = σn(xn) and

cn,δ = 6
√

log n2π4

36δ + 15, we have with probability at least 1− δ that for all n ∈ N?:

sup
x?∈X

f(x?)− f(xn) ≤ σn
(
cn,δ − 6 log σn

)
+ 9

∑
i:2−i<σn

2−i
√

logN(X , dn, 2−i) .

In order to simplify this inequality and get convergence rates for the cumulative regretRn and simple
regret Sn, it is necessary to add some assumptions on k and X . Corollary 1 gives an example of the
rates we obtain for the usual Squared-Exponential kernel k(x, x′) = e−

1
2‖x−x′‖22 and X in RD.

Corollary 1. For the SE kernel and a compact X ⊆ [0, R]D, the CHAINING-UCB algorithm incurs

regrets Rn = O
(√

n(log n)D+2
)

and Sn = O
(√

(logn)D+2

n

)
with probability at least 1− δ.

The proof of Theorem 1 employs the chaining trick to get a local control on the supremum of a
non-centered GP. Since this requires to define additional structures, the proofs are not included in
the present article and we refer instead to the technical paper [20]. The proof of Corollary 1 first
uses an upper bound on the covering numbers via the Lipschitz property of the SE kernel. It then
applies the information-theoretical inequality proven in Theorem 5 of [9] to obtain the given regret
rates. It is straightforward to apply this technique to other cases like linear kernels or Matérn kernels
with parameter ν > 2, since the covering numbers can be bounded by similar techniques.

A flexible algorithm. A reader familiar with classical chaining may ask why we use the bad-
looking sum

∑
i:εi<σn

εi
√

logN(X , dn, εi) instead of the Dudley integral. Even if the Dudley
integral is simple to bound for certain kernel k and space X , we want Algorithm 1 to be able to
adapt to all search space without having to tune its parameters. By computing the successive cover-
ing numbers, the CHAINING-UCB algorithm calibrates automatically the exploration-exploitation
tradeoff. This fact contrasts with previous algorithms like GP-UCB where the input parameter βt
depends either on the cardinality |X | or on the Lipschitz constants of the kernel (see Theorems 1 and
2 of [9]). On the computational side, the discrete sum limits the number of εi-covers which need to
be computed to only the εi such that εi > minx∈X σn(x). Thanks to their geometrical decay, these
numbers remain low in practice. Figure 1 illustrates the exploration/exploitation tradeoff we obtain
with this discrete sum on a 1D toy example, compared to the tradeoff computed with a union bound
as in GP-UCB. In Figure 1 a constant term is subtracted from the UCB in order to set the minimum
of the exploration terms to zero in both CHAINING-UCB and GP-UCB.
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Figure 2: Empirical mean of the simple regret Sn in terms of iteration n for CHAINING-UCB,
GP-UCB and RANDOM search (lower is better).

4 Practical considerations and experiments

Computing the ε-covers efficiently. As mentioned previously the computation of an optimal ε-
cover is NP-hard. We demonstrate here how to build in practice a near-optimal ε-cover using a
greedy algorithm on graph. First, remark that for any fixed ε we can define a graph G where the
nodes are the elements of X and there is an edge between x and x′ if and only if d(x, x′) ≤ ε. The
size of this construction is O(|X |2). The sparse structure of the underlying graph can be exploited
to get an efficient representation. The problem of finding an optimal ε-cover reduces to the problem
of finding a minimal dominating set on G. We can therefore use the greedy Algorithm 2 which
enjoys an approximation factor of log dmax(G), where dmax(G) is the maximum degree of G (see
for example [21] for a proof of NP-hardness and approximation results). This construction leads
to an additional (almost constant) term of

√
log log dmax(G) in the right-hand side of Theorem 1.

Finally, note that this approximation is optimal unless P = NP as shown in [22].

Experiments. In this section we compare the ability of the CHAINING-UCB algorithm to find
the maximum of an unknown function against the GP-UCB algorithm from [9] and the RANDOM
search. For both the CHAINING-UCB and the GP-UCB algorithms the value for δ was set to 0.05.
The RANDOM approach selects the next query uniformly among the unknown locations. It gives a
baseline to grasp the scale of the performances of both algorithms. All three strategies are initialized
with a set of 10 noisy observations sampled uniformly over X . Figure 2 shows the empirical mean
of the simple regret Sn over 32 runs. In every experiments the standard deviation of the noise was set
to 0.05 and the search space is discrete with |X | = 104. The SE experiment consists in generating
GPs drawn from a two dimensional isotropic SE kernel, with the kernel bandwidth set to 1. The
search space is a uniform design in a square of length 20. The Himmelblau experiment is a two
dimensional polynomial function based on the Himmelblau’s function with the addition of a linear
trend. It possesses several local maxima which makes the global optimization challenging. The
kernel used by the algorithm is an isotropic SE kernel with the bandwidth chosen by maximizing the
marginal likelihood of a subset of training points. Finally we consider the task of optimizing over
graphs. Global optimization of graphs can model complex problems as in industrial design, network
analysis or computational biology. The input space is the set of directed graphs with less than 20
nodes. The kernel is the shortest-path kernel [23] normalized such that k(g, g) = 1 for g ∈ X .
Note that in this synthetic assessment we do not address the question faced in practice of choosing
the prior. We further mention that the kernel matrix can be efficiently computed by pre-processing
all pairs of shortest paths for each graph with Floyd-Warshall’s algorithm. Figure 2 shows that the
CHAINING-UCB algorithm is empirically more efficient than the GP-UCB algorithm on the three
test cases. We remark that in practice, unlike GP-UCB, we may use a design with |X | � 104

without affecting the performance of CHAINING-UCB. However generating a GP costs O(|X |3)
which limits the tractability of synthetic assessments.

Conclusion. The theorem we derived and the experiment we performed suggest that the automatic
calibration of the exploration/exploitation tradeoff by the hierarchical ε-covers effectively adapts to
various settings. This chaining approach is a promising step toward generic, sound and tractable
algorithms for Bayesian optimization.
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