
Towards efficient Bayesian Optimization for Big Data

Aaron Klein1 Simon Bartels2 Stefan Falkner1

Philipp Hennig2 Frank Hutter1

1Department of Computer Science
University of Freiburg, Germany

{kleinaa,sfalkner,fh}@cs.uni-freiburg.de

2Department of Empirical Inference
Max Planck Institute for Intelligent Systems

{simon.bartels, phennig}@tuebingen.mpg.de

Abstract

We present a new Bayesian optimization method, environmental entropy search
(EnvES), suited for optimizing the hyperparameters of machine learning algo-
rithms on large datasets. EnvES executes fast algorithm runs on subsets of the
data and probabilistically extrapolates their performance to reason about perfor-
mance on the entire dataset. It considers the dataset size as an additional degree
of freedom to choose freely at each step of the optimization, and sets it adaptively
to trade off expected information gain about the location of the best configura-
tion vs. expected time spent. We empirically evaluate EnvES for optimizing the
hyperparameters of a support vector machine, showing that extrapolating perfor-
mance from small to large datasets can yield a considerable speedup over standard
Bayesian optimization methods.

1 Introduction

Bayesian optimization has proven to be a successful tool for hyperparameter optimization of ma-
chine learning algorithms [1, 2, 3], as it is well suited for noisy and expensive functions f : Rd → R
where no gradient information is available. To find the best point x? = argmin f(x), it iterates the
following steps: (1) learn a model p(f) that describes the underlying function f ; (2) use p(f) to
define an acquisition function a : Rd → R that quantifies how promising it is to evaluate a given
point and (3) select the most promising point by optimizing this acquisition function a [4].

Despite being more sample-efficient than other global optimization methods, Bayesian optimization
still typically requires tens to hundreds of function evaluations to identify strong solutions. For hy-
perparameter optimization, each such evaluation includes the training and validation of the machine
learning algorithm at hand, which is particularly expensive on large datasets. Scaling up Bayesian
optimization to big datasets is therefore a substantial challenge, the solution to which would allow
automated machine learning to tackle much larger datasets.

Recently, Nickson et al. [5] considered this problem and addressed it by estimating a configuration’s
performance by evaluating it based on several training runs on small random subsets of fixed, man-
ually chosen size. To transfer knowledge between similar tasks, Swersky et al. [6] used multi-task
Gaussian processes (GPs). Their method is able to exploit information gained by previous optimiza-
tion runs for a new task that is similar to previously seen ones. This approach allows one to optimize
on a small, manually-chosen subset of datapoints first to obtain a good prior for optimizing on a
larger dataset more quickly.

1

In this work, we present a novel Bayesian optimization method that is able to model the perfor-
mance of hyperparameter settings over smoothly increasing subsets of the data. Following Williams
et al. [7], we contrast the typical inputs of Bayesian optimization (here: hyperparameters) to en-
vironmental inputs, which can be set freely during optimization, but which are fixed at evaluation
time (here: dataset size). We consider the dataset size an environmental variable that we can choose
freely during each optimization step, but which is set to the entire dataset size at evaluation time
(since we aim to find good hyperparameter settings for the entire dataset). Due to its prominent
use of environmental variables, we dub our approach environmental entropy search (EnvES). This
approach resembles the multi-task Bayesian optimization approach by Swersky et al. [6], but differs
from this by considering an additional continuous input rather than a categorical one and can exploit
available prior knowledge about the scaling of cost and performance with dataset size.

2 Method

We adapt the standard way of modeling the objective function f by adding an additional in-
put f : Rd × R → R where we denote x ∈ [0, 1]d as our hyperparameter vector and
s ∈ [smin, smax] specifies the dataset size. We assume we can query the function everywhere
in the input space but only make noisy observations yi ∼ N (f(xi, si), σ

2). As it is common in
Bayesian optimization, we model our posterior believe p(f |Dn) of f after observing some data
Dn = (x1, s1, y1), . . . , (xn, sn, yn)) with a GP.

Popular acquisition functions, such as expected improvement (EI) [8] or probability of improve-
ment [9, 10], prefer configurations with better performance. In our scenario, this usually means
larger dataset sizes as the quality of a machine learning model commonly increases with the amount
of data used for training. Therefore, we use entropy search (ES) [11, 12] which aims to decrease the
entropy

H [pmin] =

∫
pmin(x) · log (pmin(x)) dx (1)

of the posterior distribution over the global minimum x?

pmin(x) = p

[
x = argmin

x′∈X
(g(x′))

]
. (2)

As we are only interested in finding x? for the full dataset size, we use g(x) = f(x, s = smax) as
the model to compute the entropy in this subspace only.

Observations at large dataset sizes naturally have a high estimated information gain, so in order to
encourage evaluations of smaller dataset sizes we also have to take into account the time for the
observation. We can achieve this by modeling a cost function c : Rd ×R→ R+ that measures the
time it takes to evaluate x on a dataset of size s. Instead of modeling c(x, s) directly, we follow
previous work [1, 6] and use a GP to model log(c) to ensure positive runtime predictions.

Taking everything together, our acquisition function represents the change in entropy per unit time
spent for the evaluation:

a(x, s) =
H [pmin(x|Dn)]− Ep(f(x,s)|Dn,x,s) [H [pmin(x|Dn ∩ {(x, s, f(x, s))})]]

c(x, s)
. (3)

As an implementation note, we follow Hennig et al. [11] who discretize the continuous input space
by irregularly chosen representer points sampled from EI, but after sampling, we project all repre-
senter points to the maximum dataset size. After discretization, we use Expectation Propagation in
order to approximate pmin. However, we note that different approximations are possible [13] and
our approach works orthogonally to those approximations.

To efficiently model the objective and cost functions, any prior knowledge should be incorporated
into the GPs. As we expect a rather simple dependency for the dataset size compared to the de-
pendency on hyperparameters, we use kernels of the following form for modeling performance and
cost, respectively:

Kf ((x, s), (x′, s′)) = KMatèrn5/2 (x,x′) ·
(
φf (s)T · Σφf

· φf (s′)
)

Kc ((x, s), (x′, s′)) = KMatèrn5/2 (x,x′) ·
(
φc(s)

T · Σφc · φc(s′)
) (4)

2

While the Matèrn kernel can be commonly found in Bayesian optimization [1], we model the dataset
size dependency with a dot product kernel using only a few basis functions φf and φc. This is mo-
tivated by the intuition that we know the computational complexity of many families of algorithms,
and that the runtime usually follows the same functional form across different hyperparameter con-
figurations. This approach yields robust predictions even in regions of the input space not well ex-
plored. Similarly, the objective function, i.e., test error or accuracy, often follows a pattern that can
be exploited with the right basis functions. In the next section, we discuss the particular choices for
our experiments. Additionally, we use MCMC sampling to estimate the hyperparameters, namely
the noise level σ2, the covariance amplitude θ, the d lengthscales of the Matèrn kernel, and the
covariance matrices Σφf

and Σφc .

To fully leverage the speedup from evaluating smaller datasets, we choose a relatively large initial
design with comparably small (and thus cheap) dataset sizes in order to improve the prediction
for dependencies on s. More specifically, we draw N random points in X and evaluate them on
s ∈

{
smax

4 , smax

8 , smax

16 , smax

32

}
, which, assuming linear or superlinear scaling of the cost in s, is

cheaper than evaluating N/2 configurations at s = smax.

3 Experiments

To evaluate our algorithm we optimized an SVM’s kernel parameter γ and regularisation parameter
C. Both parameters were bounded on a log-scale between −10 and 10. On a given dataset, we
set the lower bound smin to be 10 times the number of classes, and smax equal to the number of
training data points. In each step we shuffled the data to prevent always evaluating on the same
subset. We used five different benchmark datasets (between 1000 and 5000 data points) obtained
from [14]. Please note that these datasets are not meant to represent Big Data, but merely serve as a
computationally cheap proof of concept.

Figure 1: Training time and validation error of 25 random SVM configurations for one of the datasets. The
cost for all configurations increases with s whereas the validation error decreases or stays constant. For most
configurations around ∼ 20% of the training data suffices to predict the performance on the whole dataset.

To gain intuition how validation error and cost vary across different s, we randomly sampled 25
configuration for several datasets and evaluated them on different dataset sizes. Figure 1 shows
a representative example (plots for the other 4 datasets are qualitatively similar). Clearly, many
configurations already performed well with a relatively small subset of the data, while some other
configurations did not achieve good performance even with more data. Also, training time increases
significantly with the number of data points.

Based on these curves we chose φf (s) = (1, (1 − s)2)T as basis function to model the objective
function in dimension s. With this kernel, we bias the GP to model the prediction error as a mono-
tonically decreasing function that has its minimum at s = smax. For the cost function we used
φc(s) = (1, s)T as basis function which, combined with the fact that we predict log(c), captures all
function of the form c ∼ sα with any exponent α.

To evaluate the predictive power of the used kernels, we trained models for both, validation error
and cost, on the points from our initial design. Figure 2 shows their predictions as a function of s

3

on an unseen test point. While the actual values predicted are rather uncertain, the models already
learned the general trend that the runtime grows and the validation error decreases with s. This is
true even though the training data only included points with values of s up to smax

2 , indicated by the
black vertical line in Figure 2.

Figure 2: Extrapolation of the models for a random test point for the objective functions and the cost functions
after trained on the initial design. Both models have only seen N = 40 points up to s

2
(indicated by the vertical

line). The black dots indicate the true function values of the test point evaluated on this s.

Finally, we compared our entropy search variant to standard ES and EI by optimizing the above
mentioned SVMs. To evaluate each method, in each iteration we estimated its incumbent by opti-
mizing the posterior mean plus one standard deviation. Then, in an offline evaluation, we evaluated
the true performance of that incumbent by retraining a model with it on the full training data and
evaluating it on the validation dataset. For the initial design we used N = 40 random configura-
tions, evaluating 10 different ones for each subset size s ∈ { smax

4 , smax

8 , smax

16 , smax

32 }. As Figure 3
shows, our methods achieved dramatic speedups, finding a good solution roughly 100 times faster
than both EI and ES (note the logarithmic x-axis). However, compared to EI, both entropy search
variants failed to converge completely to the global optimum. As entropy search is designed to learn
a distribution instead of collecting low function values, it does not necessarily evaluate many points
around the expected minimum. Due to noise inside the model, this often leads to a limited accuracy
for the exact value of x?. This is a known shortcoming of ES when the model performs poorly, and
improving this is subject of future work.

Figure 3: Comparison of our environmental entropy search method (EnvES) against expected improvement
(EI) and standard entropy search (ES) on the SVM task on two different datasets. Note the logarithmic x-axis.

4

4 Conclusions

We presented a new Bayesian optimization method that models the quality of hyperparameter con-
figurations of machine learning algorithms as a function of the dataset size they run on. In this way
our method achieves good (albeit not perfect) performance roughly 100 times faster than expected
improvement or standard entropy search, even on the rather small datasets presented here. In future
work, we will apply our methods to much larger datasets using scalable learning methods, such as
deep neural networks. Furthermore, we plan to also consider other potential environmental inputs
that could be adjusted during optimization, such as the number of positive or negative datapoints for
imbalanced data, the number of classes in image classification, or the number of epochs used for
stochastic gradient descent training.

References
[1] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine learning

algorithms. In P. Bartlett, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors, Pro-
ceedings of the 26th International Conference on Advances in Neural Information Processing
Systems (NIPS’12), pages 2960–2968, 2012.

[2] F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In C. Coello, editor, Proceedings of the Fifth International Conference
on Learning and Intelligent Optimization (LION’11), Lecture Notes in Computer Science,
pages 507–523. Springer-Verlag, 2011.

[3] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization.
In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors, Proceedings
of the 25th International Conference on Advances in Neural Information Processing Systems
(NIPS’11), pages 2546–2554, 2011.

[4] E. Brochu, V. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning.
Computing Research Repository (CoRR), abs/1012.2599, 2010.

[5] T. Nickson, M. A Osborne, S. Reece, and S. Roberts. Automated machine learning on big data
using stochastic algorithm tuning. Computing Research Repository (CoRR), abs/1407.7969,
2014.

[6] K. Swersky, J. Snoek, and R. Adams. Multi-task bayesian optimization. In C. Burges, L. Bot-
tou, M. Welling, Z. Ghahramani, and K. Weinberger, editors, Proceedings of the 27th Interna-
tional Conference on Advances in Neural Information Processing Systems (NIPS’13), 2013.

[7] B. Williams, T. Santner, and W. Notz. Sequential design of computer experiments to minimize
integrated response functions. Statistica Sinica, 2000.

[8] J. Mockus, V. Tiesis, and A. Zilinskas. The application of bayesian methods for seeking the
extremum. Towards Global Optimization, 2, 1978.

[9] D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of expensive black box
functions. Journal of Global Optimization, 13:455–492, 1998.

[10] H. Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in
the presence of noise. Journal of Fluids Engineering, 86(1):97–106, 1964.

[11] Philipp Hennig and Christian J. Schuler. Entropy search for information-efficient global opti-
mization. jmlr, 98888(1):1809–1837, 2012.

[12] J. Villemonteix, E. Vazquez, and E. Walter. An informational approach to the global optimiza-
tion of expensive-to-evaluate functions. elsevier science direct. 2009.

[13] J. Hernández-Lobato, M. Hoffman, and Z. Ghahramani. Predictive entropy search for efficient
global optimization of black-box functions. In Z. Ghahramani, M. Welling, C. Cortes, N.d.
Lawrence, and K.q. Weinberger, editors, Proceedings of the 28th International Conference on
Advances in Neural Information Processing Systems (NIPS’14), 2014.

[14] J. Vanschoren, J. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in machine
learning. SIGKDD Explorations, 15(2):49–60, 2013.

5

	Introduction
	Method
	Experiments
	Conclusions

