
Locally-Biased Bayesian Optimization using
Nonstationary Gaussian Processes

Ruben Martinez-Cantin
Centro Universitario de la Defensa

Zaragoza, 50090, Spain
rmcantin@unizar.es

Abstract

Bayesian optimization is becoming a fundamental global optimization algorithm
in many applications where sample efficiency is needed, ranging from automatic
machine learning, robotics, reinforcement learning, experimental design, simula-
tions, etc. The most popular and effective Bayesian optimization method relies on
a stationary Gaussian process as surrogate. In this paper, we present a novel non-
stationary strategy for Bayesian optimization that is able to outperform the state
of the art in Bayesian optimization both in stationary and nonstationary problems,
such as automatic hyperparameter tuning and reinforcement learning.

1 Introduction

Bayesian optimization, although being a classic method [17, 18], has become quite popular recently
for being a sample efficient method of global optimization [12]. Recent works have found similar-
ities with Bayesian optimization and the way biological systems adapt and search, such as human
active search [2] or animal adaptation to injuries [5]. In machine learning, it has been applied for
automatic algorithm tuning by [22] and reinforcement learning by [16]. The main contribution of
the paper is an algorithm for improved Bayesian optimization using a combination of local and
global kernels to achieve a nonstationary behavior, called Spartan Bayesian Optimization. Although
it reaches its best performance in problems that are clearly nonstationary, our evaluation shows that
it can improve the results of Bayesian optimization in most scenarios, similar to other locally-biased
global optimization algorithms [7].

Consider the problem of finding the minimum x∗ of an unknown real valued function f : X → R,
where X is a compact space, X ⊂ Rd, d ≥ 1. In order to find the minimum, we assume has a
maximum budget of N evaluations of the target function f . The purpose of Bayesian optimization
is to find optimal decisions for searching the minimum using a probabilistic surrogate model P (f).
For the remainder of the paper, we are going to assume that P (f) is a Gaussian process ξ(x) with
inputs x ∈ X and a kernel or covariance function k(·, ·) with hyperparameters Θ. We assume that
hyperparameters are estimated using MCMC. In order to avoid bias and guarantee global optimality,
we rely on an initial design of p points based on Latin Hypercube Sampling (LHS) following the
recommendation of [12, 4, 13]. Finally, we use the expected improvement criterion from [17] to
select the next point each iteration. However, it is important to note that the ideas presented also
work with other popular models such as Student-t processes [18, 29, 21] or other criteria such as
upper confidence bound by [24] or relative entropy [10, 9], among others.

2 Nonstationarity in Gaussian processes

Many applications of Gaussian process regression, including Bayesian optimization, are based on
the assumption that the process is stationary and often isotropic. For example, the use of the isotropic
squared exponential kernel in GPs is quite frequent: kSE(x,x′) = exp(−1/2r2), being r2 =

1

(x − x′)TΛ(x − x′)), where Λ = θ−1l I and θl represents the length-scale hyperparameter that
captures the smoothness or variability of the function. That is, small values of θl will be more
suitable to capture signals with high frequency components; while large values of θl result in model
for low frequency signals or flat functions. This property also holds for other popular kernels like
the anisotropic kernels with automatic relevance determination (ARD) [19] where in this case, Λ =
diag(Θ) becomes a diagonal matrix with a length-scale parameter per dimension.

This length-scale estimation results in an interesting behavior in Bayesian optimization. For the
same distance between points, a kernel with smaller length-scale will result in higher predictive
variance, therefore the exploration will be more aggressive. This idea has been explored previously
in [27] by forcing smaller scale parameters to improve the exploration. More formally, in order
to achieve no-regret convergence to the minimum, the target function must be an element of the
reproducing kernel Hilbert space (RKHS) characterized by the kernel k(·, ·) [4, 24]. For a set of
kernels like the SE or Matérn, it can be shown that, given two kernels kl and ks with large and small
length scale hyperparameters respectively, any function f in the RKHS characterized by a kernel kl
is also an element of the RKHS characterized by ks [27]. Thus, using ks instead of kl is safer in
terms of guaranteeing convergence. However, if the small kernel is used everywhere, it might result
in unnecessary sampling of smooth areas.

There have been several attempts to model nonstationary functions with Gaussian processes. For
example, the use of specific nonstationary kernels [19], Bayesian Treed GP models by [8] or pro-
jecting the input space to a stationary latent space by [20]. Recently, a version of the latter idea
has been applied to Bayesian optimization by [23], with a further work building Treed GPs on top
of the warping model by [1]. Treed GPs were previously used in BO by [26]. A related approach
of additive GPs is used in [13] for Bayesian optimization of high dimensional functions under the
assumption that the actual function is a combination of lower dimensional functions.

Our approach to nonstationarity, the Spartan Bayesian Optimization algorithm, is based on the
model presented in [14] where the input space is partitioned in different regions such as the resulting
GP is the linear combination of local GPs: ξ(x) =

∑
i λi(x)ξi(x). Each local GP has its own spe-

cific hyperparameters, making the final GP nonstationary even when the local GPs are stationary. In
order to achieve smooth interpolation between regions, [14] suggest the use of a weighting function
νi(x) for each region, having the maximum in region i and decreasing its value with distance to

region i. Then, we can set λi(x) =
√

νi(x)∑
j νj(x)

.

For Bayesian optimization, we suggest the combination of a local and a global kernel with multi-
variate normal distributions as weighting functions. Assuming a normalized input space [0, 1]d, we
consider that for each dimension:

ν
(k)
global = N (0.5, σglobal); ν

(k)
local = N (θ(k)pos, σlocal) ∀ k = 1 . . . d (1)

where {θ(k)pos}d1 is considered to be part of the set of hyperparameters of the surrogate model that
are learned accordingly when new data is available Θ = {θpos, θlocal, θglobal}. In that way, the
position of the local kernel is adapting towards to the area near the minimum or other important
area. Besides, we set in advance the value of the variances (σglobal, σlocal) as a regularization term
to avoid overfitting. In our tests and experiments, we found that a robust value for the variances was
σglobal = 10 and σlocal = 0.05. Thus, the resulting kernel function is defined as:

k(x,x′|θi)← λl(x|θposi)λl(x
′|θposi)kl(x,x

′|θli) + λg(x)λg(x
′)kg(x,x

′|θgi) (2)

The intuition behind this setup is the same of many acquisition functions in Bayesian optimization:
the aim of the surrogate model is not to approximate the target function precisely in every point, but
to provide information about the location of the minimum. For example, the resulting model can
flatten most of the search space, as soon as the region near the minimum has the correct variability.
Many optimization problems are difficult due to the fact that the region near the minimum has higher
variability than the rest of the space. However, it is important to note that the kernel hyperparameters
are initialized with the same prior for the local and global kernel. Thus, there is no guarantee that
the local kernel becomes the kernel with smaller length-scale. Depending on the data captured, it
could learn a model where the local kernel has larger length-scale (i.e.: smoother) than the global
kernel, which may also improves the convergence in plateau-like functions.

2

10 20 30 40 50 60
func. evaluations

0.1

0.0

0.1

0.2

0.3

0.4

0.5

o
p
ti

m
iz

a
ti

o
n
 g

a
p

Exponential 2d function

BO
SBO
WARP

10 20 30 40 50 60 70
func. evaluations

3.5

3.0

2.5

2.0

1.5

1.0

0.5

m
in

im
um

 v
al

ue

Hartmann 6D function

BO
SBO
WARP

0 50 100 150 200
func. evaluations

8

7

6

5

4

3

2

m
in

im
u
m

 v
a
lu

e

Michalewicz 10D function (m=10)

BO
SBO
WARP

10 20 30 40 50 60 70
func. evaluations

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

lo
ss

 fu
nc

tio
n

Logistic Regression

SBO
BO
WARP

10 20 30 40 50 60 70
func. evaluations

1240

1250

1260

1270

1280

1290

1300

lo
ss

 fu
nc

tio
n

Online LDA

BO
SBO
WARP

0 50 100 150 200
function evaluations

0.45

0.50

0.55

0.60

0.65

0.70

lo
ss

 fu
nc

tio
n

HPNNET (hierarchical model)

BO
SBO
WARP

Figure 1: Results on classic optimization and machine learning benchmarks [6].

3 Evaluation and results

We have implemented1 Spartan Bayesian Optimization (SBO) in the BayesOpt library [15]. For
comparison, we also implemented the input warping method (WARP) [23]. We also evaluated other
nonstatioary Bayesian optimization models like random forests [11], but did not include in the results
as its performance was in general worse than vanilla BO.

The results presented in this section are based on the standard convention in Bayesian optimization
literature, that is, a simple zero-mean Gaussian process, a Matérn kernel ν = 5/2 with automatic
relevance determination for continuous variables kM5/2(x,x′) = exp(−

√
5r)(1 +

√
5r + 5

3r
2), a

Hamming kernel as presented in [27] for categorical variables and slice sampling for learning the
model hyperparameters (length-scale, warping, position, etc.). However, using BayesOpt, the sug-
gested method has also been tested with other models such as Student-t processes, other kernels, etc.
Due to the computational burden of MCMC for the hyperparameters, we have used a small number
of samples (10), while trying to decorrelate every resample with large burn-in periods (100 samples)
following the convention in [22]. All experiments were repeated 20 times using common random
number to reduce the sampling error between algorithms. The number of function evaluations in
each plot includes a initial design of 10 points from LHS.

Top row of Figure 1 shows the results of optimizing the exponential 2D function f(x) =
x1 exp(−x21 − x22) for x1, x2 ∈ [−2, 18]2 from [8]. The use of classical stationary models (BO) re-
sults in a poor convergence because of the high nonstationarity of the function, while nonstationary
methods, such as [23] (WARP) and the proposed method (SBO) result in an improved convergence.
For the Hardmann 6D function, the differences are barely significant, which might imply that the
function is stationary. However, even in that case, we can see that nonstationary methods can easily
avoid getting stuck in local minima, being more robust. The Michalewicz function is known to be
one of the hardest benchmarks in global optimization due to its many local minima. In this case, all
the methods have slower convergence, due to the complexity of the problem

Bottom row of Figure 1 is based on well known benchmarks for automatic tunning of machine
learning algorithms [6]. Among all the available benchmarks we have selected the Gradient Boosting
as it provides the lowest RMSE with respect to the actual problem. The logistic regression problem
(4D continuous) is easy for Bayesian optimization. Even the vanilla BO can reach the minimum in
less than 50 function evaluations. In this case, the WARP method is the fastest one, with almost 20
evaluations. However, the proposed method has only slightly worse performance by a small fraction
of the total cost. For the onlineLDA problem (3D continuous), both the standard BO and the WARP
method get stuck while our method is able to achieve a 50% extra gain. Finally, for the HP-NNET
problem using the MRBI dataset (7D continuous, 7D categorical), SBO fails to converge at an early

1The code will be freely available once the paper gets published.

3

10 15 20 25 30 35 40
func. evaluations

3.8

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

re
w

ar
d

3-limb walker control

BO
SBO
WARP

10 15 20 25 30 35 40
func. evaluations

600

400

200

0

200

400

600

800

1000

re
w

a
rd

Mountain Car Control

BO
SBO
WARP

atanhΣx

vx

1

v̇x tanh

w7

w3

w2

w4

w1

w5

w6

Figure 2: RL problems. Left: Walker. Center: Mountain Car Right: Mountain Car policy.

stage, due to the complexity of the problem. However, as more data is gathered, the local kernel
jumps to a good spot and the convergence is faster.

We also evaluate SBO with several classic reinforcement learning problems. We use the active policy
search model [16], which has the advantage being model free and without access to the dynamics,
state or instantaneous reward of the system. However, in this setup there are usually failure states
or scenarios which result in flat or plateau regions due to large penalties. This is opposed to the
behavior of the reward near the optimal policy where small variations on a suboptimal policy can
considerably change the performance achieved. Therefore, the resulting reward function presents a
nonstationary behavior with respect to the policy parameters.

Figure 2 shows the performance of learning the controller of a three limb walker to allow fast up-
right walking on the model presented in [28]. It has been already used for Bayesian optimization
benchmark in [10]. The reward was based on a walking speed with a penalty for not maintaining
the upright position. The dynamic controller has 8 continuous parameters. We also present the clas-
sical mountain car problem by [25], but dealing directly with continuous states and actions. The
policy is a simple perceptron model inspired by [3]. The potentially unbounded policy parameters
w = {wi}7i=1 are computed as w = tan

(
(π − ε)w01 − π

2

)
where w01 are the policy parameters

bounded in the [0, 1]7 space and ε is a small number to avoid wi →∞.

Time (s) Exp [8] Hart6 Micha10 LogReg OnLDA HPNNET Walker MCar
#evals 60 70 210 50 70 200 40 40
BO 120 460 8360 28 112 20 47 38
SBO 2481 10415 225313 730 2131 146 440 797
WARP 13929 188942 4445854 9149 21299 2853 20271 18972

One of the main advantages of SBO is its reduced computational cost with respect to WARP as can
be seen above.The main different between the three algorithms is the kernel function k(·, ·), which
becomes an important factor as the kernel function is called millions or billions of times in Bayesian
optimization. However, the same computational tricks and parallelization can be applied to all the
methods. In the case of WARP, the kernel includes the Beta CDF which is much more involved
than the evaluation of the Matérn kernel or the Gaussian weights of SBO. Besides, we found that in
all benchmarks, learning the position of the local kernel is easy for slice sampling. In contrast, the
narrow likelihood of Beta parameters implies that many samples are rejected during MCMC2. It is
important to note that, although Bayesian optimization is intended for expensive functions and the
cost per iteration is negligible, the difference between methods could mean hours of CPU-time for a
single iteration, changing the range of potential applications.

4 Conclusions

We have presented a new algorithm called Spartan Bayesian Optimization (SBO) which combines
a local and a global kernel to deal with nonstationarity in Bayesian optimization. Besides, we have
shown that the model can increase convergence speed even in stationary problems by improving
local refinement while retaining global exploration capabilities. We have validated the performance
of the algorithm in standard optimization benchmarks, machine learning applications such as hyper-
parameter tuning problems and classic reinforcement learning scenarios.

2For all algorithms we use slice sampling as recommended by [23]

4

Acknowledgments

This work has been supported by project SIRENA (CUD05-2013)

References
[1] John-Alexander M. Assael, Ziyu Wang, and Nando de Freitas. Heteroscedastic treed bayesian optimisa-

tion. Technical report, arXiv, 2014.
[2] Ali Borji and Laurent Itti. Bayesian optimization explains human active search. In C.J.C. Burges, L. Bot-

tou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Information Process-
ing Systems 26, pages 55–63. Curran Associates, Inc., 2013.

[3] E. Brochu, V.M. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions,
with application to active user modeling and hierarchical reinforcement learning. eprint arXiv:1012.2599,
arXiv.org, December 2010.

[4] Adam D. Bull. Convergence rates of efficient global optimization algorithms. Journal of Machine Learn-
ing Research, 12:2879–2904, 2011.

[5] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots that can adapt like ani-
mals. Nature, 521:503507, 2015.

[6] K. Eggensperger, F. Hutter, H.H. Hoos, and K. Leyton-Brown. Efficient benchmarking of hyperparameter
optimizers via surrogates. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 2015.

[7] Joerg M Gablonsky and C Tim Kelley. A locally-biased form of the DIRECT algorithm. Journal of
Global Optimization, 21(1):27–37, 2001.

[8] Robert B Gramacy. Bayesian treed Gaussian process models. PhD thesis, University of California, Santa
Clara, 2005.

[9] Philipp Hennig and Christian J. Schuler. Entropy search for information-efficient global optimization.
Journal of Machine Learning Research, 13:1809–1837, 2012.

[10] José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive entropy
search for efficient global optimization of black-box functions. In Z. Ghahramani, M. Welling, C. Cortes,
N.D. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 27,
pages 918–926. Curran Associates, Inc., 2014.

[11] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for gen-
eral algorithm configuration. In LION-5, page 507523, 2011.

[12] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.

[13] Kirthevasan Kandasamy, Jeff Schneider, and Barnabas Poczos. High dimensional bayesian optimisation
and bandits via additive models. In International Conference on Machine Learning (ICML), 2015.

[14] Andreas Krause and Carlos Guestrin. Nonmyopic active learning of Gaussian processes: an exploration-
exploitation approach. In International Conference on Machine Learning (ICML), Corvallis, Oregon,
June 2007.

[15] Ruben Martinez-Cantin. BayesOpt: A Bayesian optimization library for nonlinear optimization, experi-
mental design and bandits. Journal of Machine Learning Research, 15:3735–3739, 2014.

[16] Ruben Martinez-Cantin, Nando de Freitas, Eric Brochu, Jose Castellanos, and Arnoud Doucet. A
Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually
guided mobile robot. Autonomous Robots, 27(3):93–103, 2009.

[17] Jonas Mockus. Bayesian Approach to Global Optimization, volume 37 of Mathematics and Its Applica-
tions. Kluwer Academic Publishers, 1989.

[18] Anthony O’Hagan. Some Bayesian numerical analysis. Bayesian Statistics, 4:345–363, 1992.
[19] Carl E. Rasmussen and Christopher K.I. Williams. Gaussian Processes for Machine Learning. The MIT

Press, Cambridge, Massachusetts, 2006.
[20] Paul D Sampson and Peter Guttorp. Nonparametric estimation of nonstationary spatial covariance struc-

ture. Journal of the American Statistical Association, 87(417):108–119, 1992.
[21] Amar Shah, Andrew Gordon Wilson, and Zoubin Ghahramani. Student-t processes as alternatives to

Gaussian processes. In AISTATS, JMLR Proceedings. JMLR.org, 2014.
[22] Jasper Snoek, Hugo Larochelle, and Ryan Adams. Practical Bayesian optimization of machine learning

algorithms. In NIPS, pages 2960–2968, 2012.
[23] Jasper Snoek, Kevin Swersky, Richard S. Zemel, and Ryan Prescott Adams. Input warping for Bayesian

optimization of non-stationary functions. In International Conference on Machine Learning, 2014.

5

[24] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimization
in the bandit setting: No regret and experimental design. In Proc. International Conference on Machine
Learning (ICML), 2010.

[25] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, 1998.

[26] Matthew A Taddy, Herbert KH Lee, Genetha A Gray, and Joshua D Griffin. Bayesian guided pattern
search for robust local optimization. Technometrics, 51(4):389–401, 2009.

[27] Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, and Nando de Freitas. Bayesian optimization
in high dimensions via random embeddings. In International Joint Conferences on Artificial Intelligence
(IJCAI) - Extended version: http://arxiv.org/abs/1301.1942, 2013.

[28] Eric R Westervelt, Jessy W Grizzle, Christine Chevallereau, Jun Ho Choi, and Benjamin Morris. Feedback
control of dynamic bipedal robot locomotion, volume 28. CRC press, 2007.

[29] Brian J. Williams, Thomas J. Santner, and William I. Notz. Sequential design of computer experiments
to minimize integrated response functions. Statistica Sinica, 10(4):1133–1152, 2000.

6

	Introduction
	Nonstationarity in Gaussian processes
	Evaluation and results
	Conclusions

