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Abstract

Reconstructing brain activity through electroencephalography requires a boundary
value problem (BVP) solver to take a proposed distribution of current dipoles
within the brain and compute the resulting electrostatic potential on the scalp. This
article proposes the use of sequential kriging optimization to identify different
optimal BVP solver parameters for dipoles located in isolated sections of the brain
by considering the cumulative impact of randomly oriented dipoles within a chosen
isolated section. We attempt preemptive termination of parametrizations suggested
during the sequential kriging optimization which, given the results to that point,
seem unlikely to produce high quality solutions. Numerical experiments on a
simplification of the full geometry for which an approximate solution is available
show a benefit from this preemptive termination.

1 Introduction

Electroencephalography (EEG) is a non-invasive tool for localizing neural sources and reconstructing
brain activity using measurements on the surface of a patient’s scalp [22]; its practical applications
involve both clinical diagnoses and neurophysical research. Maxwell’s equations explain the mech-
anism through which knowledge of the location and orientation of current dipoles (which model
beams of active neurons) within the brain can be used to predict the resulting electrostatic potential
on the scalp [23]. In practice, then, these electrostatic potentials can be measured on the scalp of a
patient under some defined stimulus and an inverse problem can be solved to reconstruct the current
distribution within the brain [13].

As is the case with most inverse problems, the efficiency of the solution mechanism is strongly
dependent on the quality of the forward solver; for this problem, the forward solver is the boundary
value problem (BVP) solver which solves Maxwell’s equation for a proposed dipole or set of dipoles
which produce the boundary conditions. Possible solvers for this forward problem include the finite
element method [29], the more popular boundary element method (BEM) [19] and, our preferred
strategy, the method of fundamental solutions (MFS) [2].

The MFS may be preferred to FEM/BEM for its meshfree nature but it also comes with complications,
primarily in the form of free parameters which may provide good or bad numerical accuracy depending
on how they are chosen. Some literature describes special circumstances for which optimal MFS
parameter choices are known [18], but for most problems there are only heuristic parametrization
strategies for individual applications [9].

Section 1.1 details the MFS computational situation and the role that the various parameters play.
In Section 2 we define a metric which measures the quality of given parameter values; we also
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propose a small modification to the standard sequential kriging optimization (SKO) workflow to
minimize computation on underperforming parameter suggestions. Section 3 contains numerical
experiments on a simplified version of the problem which show the viability of Bayesian optimization
for parameter tuning in this setting.

1.1 The MFS for the Coupled BVP

The full formulation of this EEG problem using the MFS is rather involved and is discussed in full
detail in [2], with [1] also providing the structure for the nearby magnetoencephalography problem.
We limit this discussion to identifying the role of the free parameters in defining the MFS solution.

The MFS is popular for certain boundary value problems because it converts a boundary value
problem over a volume into an approximation problem on the boundary [8]. In this situation, there
are three boundary value problems, one each within the brain/skull/scalp, which must be solved in a
coupled fashion to define the electrostatic potential on a patient’s scalp given a current dipole or set
of dipoles within the brain. A separate solution must be defined on each of these domains,

u(r)(p) =
∑

ξj∈Ξ(r,i)

c
(r,i)
j K(p, ξj) +

∑
ξj∈Ξ(r,d)

c
(r,d)
j K(p, ξj),

for r = 1, 2, 3 corresponding to the scalp, skull and brain1, respectively. and each of these solutions
has free parameters, Here, K(p, ξ) = 1/‖p − ξ‖ is the Green’s kernel for the three dimensional
Laplacian on an unbounded domain [12]. Our free parameters appear in the construction of the
so-called fictitious boundary on which the sets of kernel centers Ξ are defined; we use Ξ(1,i) to denote
the kernel centers on the inflated fictitious boundary associated with the scalp solution and Ξ(1,d) to
define the kernel centers on the scalp’s deflated fictitious boundary2. The allocation and placement of
source points has been a complication for MFS methods since their inception and was discussed at
length in a recent survey [9]. Figure 1 depicts the computational setup for this problem.

Figure 1: left: Depiction of the components of the reconstruction problem. right: Distribution of
MFS points on a more easily readable simplification of the domain.

Following the problem definition in [2], each fictitious boundary is defined with an inflation or
deflation parameter, and the size of the set of kernel centers Ξ associated with that fictitious boundary,
|Ξ|, must also be chosen.3 Thus, in this formulation, there are as many as 10 free parameters defining
the solution to this coupled BVP, two for each fictitious boundary/interface. However, because there
is often a desire to balance the number of kernel centers and collocation points, we fix values for
the number of centers |Ξ| and instead attempt to only adjust the inflation/deflation of the 5 fictitious
boundaries. We hope to use future work to simultaneously select both aspects of the BVP solver.

1 The brain has no deflation region, thus Ξ(3,d) is empty.
2 Because some of the collocation conditions appear as part of coupling between domains (brain to skull and

skull to scalp), this might be more accurately called a fictitious interface for those components. We retain the
term fictitious boundary to match existing literature despite the fact that only the scalp has a boundary condition.

3 It is also an interesting question if even the individual location of each kernel center could be optimally
chosen, but we assume, for now, that centers are as uniformly distributed as possible on their fictitious boundary.
There is also some theoretical guidance regarding acceptable kernel center locations [4].
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2 Sequential Kriging Optimization for Tuning MFS EEG Solvers

Sequential kriging optimization [14] as well as related terms and methods such as hyperparameter
selection [5], sequential model-based algorithm configuration [15] or the ultimately general Bayesian
optimization [27], provide strategies for efficiently optimizing black-box functions. To more clearly
state our black-box function, we assume only a single dipole p′ exists within the brain; this distinction
would need to be lifted to apply this method in the full spectrum of possible EEG reconstructions.

The black box function we define here is based on the goal of identifying optimal free parameters for
an MFS solution as the forward solver within an inverse solver so as to make the inverse solver as
efficient and accurate as possible. We define the quality of a set of parameters θ for a single dipole p′

as the difference between the MFS and true solutions for that p′ at a set of test points on the scalp4.
We compress this difference into a scalar with

Q(θ;p′) = − log

(
ktest∑
k=1

∣∣∣u(1)
MFS(pk)− u

(1)
true(pk)

∣∣∣2 / ktest∑
k=1

∣∣∣u(1)
true(pk)

∣∣∣2) , (1)

where ktest represents the number of pk test points placed on the scalp. The dipole p′ appears
implicitly in the definition of the c terms in the uMFS solution as well as in the “true” solution.

Dipoles in different brain regions will likely require different inflation/deflation of the fictitious
boundary to perform optimally. We propose that, within a given region Ω′ of the brain, dipoles
be selected with random location and orientation5 and then we study the mean performance over
those dipoles. If we abuse notation slightly and define the uniform sampling of dipole locations and
orientations within Ω′ as p′ ∼ Unif(Ω′), we can denote the sample mean over navg observations as
Q̄(θ); this sample average is the black-box function to be maximized during the SKO. We also use
the sample variance in the construction of the kriging model [25].

Algorithm 1 Preemptive EEG Termination
Input: Ω′, jmax, navg, nmin, jinit
j ← 0;R ← {};
while j < jmax do
θ ← suggestion_from_SKO(R)
v← {}
for n← 0 to navg do
p′ ∼ Unif(Ω′)
v← v ∪Q(θ;p′)
j ← j + 1
if n > nmin and j > jinit then

break if Mean(v) < Mean(R)
end if

end for
R ← R∪ {θ,v}

end while

In initial SKO experiments, we recognized that for
p′ ∼ Unif(Ω′) most θ yielded similar distribution
shapes of Q(θ;p′) values differing primarily by their
mean. This led us to believe that, since the impact
of θ was primarily a translation of the Q̄ distribution,
we could predict with fewer than navg values of p′ ∼
Unif(Ω′) whether a given θ could perform optimally.

We implemented a heuristic strategy which is on dis-
play in Algorithm 1. This algorithm requires choos-
ing preemption parameters: jmax is the total number
of MFS/true solutions to be computed over the course
of the optimization, navg is the maximum number of
p′ choices to consider before returning Q̄(θ), nmin is
the minimum number of p′ choices to consider be-
fore allowing preemptive termination, and jinit is the
number of initial Q evaluations for which preemption
is forbidden so as to form a baseline of Q values. We

write Mean(R) to denote the mean of the scores of all the p′ considered thus far when pooled into
a single sample, i.e., if R = {{θ1, {1, 2, 3}}, {θ2, {4, 5, 6}}} then Mean(R) = 3.5. Any partially
completed θ values still report their Q̄ and sample variance values to the kriging model.

This concept of a variable amount of work depending on the perceived quality of a given suggestion
appears under various names in the literature such as freeze-thaw Bayesian optimization [28],
hyperband [20], or predictive termination [10]. Similarly to our strategy, the F-Race Algorithm [7]
(which has an open source implementation [21]) provides a mechanism for allowing multiple parallel

4 When the true solution is unavailable (as is almost certainly the case) we substitute an expensive BEM
solution computed with a very high number of elements so as to be substantially more accurate than the MFS
solution. In future work, we hope to define quality in a cross-validation style computation within the inverse
solver where the true solution is represented by a validation set drawn from the actual observations.

5 The appropriate random selection may be complicated based on the neurophysiology of that region. We
leave that discussion for future research and simply choose dipoles of magnitude unity uniformly distributed
within Ω′ with uniform distribution over orientations.
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suggestions and a statistical analysis for discarding underperforming suggested θ. Similar racing
and adaptive capping methods are also available in the open source software ParamILS [16]. The
literature on multi-armed or infinitely-armed bandits may also provide a more rigorous mechanism for
pausing and revisiting a range of θ suggestions in a regret-based framework, rather than terminating
suggestions as described in Algorithm 1 [3]. Of immediate interest to our SKO framework is the
use of covariance kernels which contain components modeling the quality of the approximation Q̄
as a function of n (and, perhaps, a bootstrap estimate of the variance [11]) which is a topic that has
appeared in some uncertainty quantification research [24]. While our heuristic is simple to state
and implement, it will be improved upon and augmented in future work using this rich breadth of
available ideas present in the optimization and model configuration communities.

3 Numerical Experiments

To simplify initial testing and isolate potential sources of error/uncertainty, these numerical exper-
iments involve a less complicated geometry for which there exists an analytic solution [30]: three
concentric spheres (of radii .087, .092 and .1 m with conductivity .33, .0125 and .33 S/m respectively)
replace the physical brain/skull/scalp geometry we eventually hope to use. Refer to Figure 1 to see
how the source points are distributed in this domain. Future work must involve the more realistic
geometries explored in [2].

All dipole moments have magnitude 1 A·m. The SKO used an expected improvement acquisition
function [17]; any θ values that yielded a collocation matrix without full rank were treated as failures.
These experiments used values of ktest = 1000, jmax = 800, navg = 30, nmin = 5 and jinit = 5navg;
for these parameters, the maximum number of non-failed θ values which can be considered (which
only occurs in the case where they produce increasingly low Q̄) is jinit/nmax + (jmax − jinit)/nmin =
135 and the minimum number to be considered (which only occurs for increasingly high Q̄) is
jinit/nmax + (jmax − jinit)/nmax ≈ 27. The parameter values suggested here are chosen arbitrarily,
although nmin = 5 was provide some opportunity to perform before truncation. All point distributions
on spheres are created with the spiral method described in [26]. The number of collocation points on
each of the three spheres was always fixed at 300, with |Ξ(1,d)| = |Ξ(2,i)| = |Ξ(2,d)| = |Ξ(3,i)| = 90
and |Ξ(1,i)| = 180; these choices were made arbitrarily, and future work could include tuning these
values along with the inflation/deflation parameters. Test results are presented in Table 1.

Table 1: Median results over 30 tests from specific dipole distributions. PREEMPTIVE and STANDARD
refer to whether or not nmin < navg or nmin = navg, respectively. BONUS states the number of extra
suggestions enjoyed by the preemptive strategy; for example, a BONUS 10 value states that 10
additional θ parameters were able to be tested because the preemptive truncation allowed for as few
as nmin MFS solves to be conducted rather than the full navg. PREEMPTIVE results in italics indicate
a statistically significant difference with p < .05 from STANDARD using a Mann-Whitney U test.

INDEX SEQUENTIAL KRIGING OPTIMIZTION RANDOM SEARCH
STANDARD PREEMPTIVE BONUS STANDARD PREEMPTIVE BONUS

1 3.681 3.845 16 3.631 3.439 27
2 1.494 1.532 15 1.333 1.383 30
3 5.090 5.245 10 4.672 4.905 19
4 0.862 0.978 28 0.778 0.870 34
5 0.219 0.257 21 0.146 0.195 30
6 2.131 2.209 21 1.944 2.058 31

At https://github.com/sigopt/sigopt-examples there is a description of the dipole regions
associated with each INDEX. As evidenced by the range of optimal Q̄ values found, the tests vary in
difficulty; however, in each test there is a benefit to using SKO over basic random search [6], and a
benefit to using the preemption strategy outlined in Section 2.
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