
Bayesian Optimisation for solving Continuous
State-Action-Observation POMDPs

Philippe Morere
The University of Sydney

philippe.morere@sydney.edu.au

Roman Marchant
The University of Sydney

r.marchant@sydney.edu.au

Fabio Ramos
The University of Sydney
framos@cs.usyd.edu.au

Abstract

Decision making under uncertainty is a challenging task, especially when dealing
with complex realistic scenarios. The Partially Observable Markov Decision
Process (POMDP) framework, designed to solve this problem, was subject to much
work lately. Most POMDP solvers, however, focus on planning in discrete state,
action and/or observations spaces, which does not truly reflect the complexity of
real word problems. This paper presents Continuous Belief Tree Search (CBTS),
a planner for continuous state, action and observations spaces using Bayesian
Optimisation (BO) to dynamically sample promising actions while constructing
a belief tree. Dynamic action sampling allows for richer action generation, and
shows promising results in simulation.

1 Introduction

Planning with incomplete knowledge of the environment is a challenging task. Agents evolving in
unknown environments often need to plan when few or no data is available, and deal with continuous
real world scenarios. In many robotics tasks, robots start with very little knowledge, and the data
they gather improves planning quality. This improvement motivates online planning methods, which
recompute policies whenever the agent executes an action. Bayesian optimisation was proposed as
an online planning method for informative path planning by [1]. While choosing the immediately
most informative trajectory yields acceptable results, the myopic character of BO leads to suboptimal
policies. The same monitoring problem was reformulated as a POMDP by [2] to benefit from the
framework’s look-ahead planning capabilities, and proved to perform better than its myopic equivalent.
However, the problem of non-myopic planning for monitoring was only solved for environments with
discrete actions. While discretising actions is perfectly sound in engineered scenarios, it often leads
to suboptimal policies in real world problems.

This paper proposes a solution to solve POMDPs in fully continuous environments based on Monte-
Carlo Tree Search (MCTS), an approximate tree-based method proposed by [3]. MCTS-based
planners handle continuous states and observations, but are limited to discrete actions. We present
CBTS, an extension of MCTS for planning on continuous action spaces. It relies on dynamic action
sampling, thus generating more precise actions than traditional sampling techniques. The proposed
method is applied to a space modelling problem in which a robot learns an objective function by
gathering noisy measurements. The robot maintains a belief over the studied function using a
Gaussian Process, and monitoring behaviour is achieved by defining a specific reward function.
Experiments show planning with continuous actions results in higher accumulated rewards.

The remainder of the paper is organised as follows. Section 2 presents background on POMDP
solvers. Section 3 gives theory on the POMDP framework. Our CBTS planner is presented in Section
4. Simulated experiments of a monitoring problem are shown in Section 5. The paper concludes with
Section 6.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

2 Related work

The planning problem in POMDPs has received much attention over the last decades. Classic offline
planners compute a policy before experiments start [4, 5], generally relying on sampling and trading
off optimality for speed. In most realistic scenarios, new information is gathered as robots evolve in
their environment, which offline methods do not take advantage of.

Many successful online POMDP planners were developed in [6, 7, 8, 3, 9, 10], efficiently handling
discrete and low-cardinality states, actions and observations. Some were extended to large and
continuous state and observation spaces [7, 3, 9]. Most of these techniques approximate the search of
the different spaces by sampling them to compute a more compact representation. Random sampling
naturally leads to expectation estimates, which allows algorithms to estimate expected states and
observations. However, finding the action yielding maximum reward is not an expectation problem
and therefore cannot be tackled with the same sampling techniques. POMDPs with continuous
actions were addressed by [11, 12, 13, 14]. While successful in their study cases, these methods rely
on diverse unrealistic assumptions: finding the best policy of a predefined class, assuming beliefs
to be Gaussian distributions, assuming to receive the most likely observations, or pre-computing a
candidate policy offline. In this paper, we propose an approximate and online POMDP solver for
continuous state, action and observation spaces, which does not restrict the type of belief nor makes
strong assumptions on the nature of observations.

3 Background

Partially observable MDPs (POMDPs) is a well-defined framework for non-myopic decision making
under uncertainty when the state is not directly observable. POMDPs are defined by the tuple
< S,A, T,R,Ω, O, γ >, where S is the space of states, A is the space of actions and Ω is the
space of observations. At each step t, the agent arrives at state s′ ∈ S, and receives a reward
r ∈ R and an observation o ∈ Ω for taking an action a ∈ A in its previous state s at step t − 1.
The transition dynamics distribution T satisfies the Markov property, expressing the probability of
transitioning to state s′ when executing action a in state s, T (s, a, s′) = p(s′|s, a). Rewards r are
given by a reward function R which only depends on the current state and action, r = R(s, a). The
observation distribution O expresses the probability of observing o when executing action a in state
s, O(o, a, s) = p(o|a, s). γ ∈ [0, 1] is a user-defined parameter used to discount long-term rewards
when planning.

Given the partial observability nature of the problem, the agent does not have access to its true state.
Instead, it relies on maintaining a belief b(s) over the possible current states. POMDP planners
compute policies π : S → A reflecting the action an agent should take when in a given state. Solving
a POMDP is equivalent to finding the optimal policy π∗, maximising the expected infinite sum of
future discounted rewards,

π∗ = arg max
π

E[

∞∑
t=0

γtrπt |bo] (1)

where b0 is the initial belief, and rπt is the reward for executing policy π at time t.

Diverse techniques were proposed to solve POMDPs [8]. The method presented in this paper is based
on a stochastic tree search algorithm.

4 Continuous Belief Tree Search

Monte-Carlo Tree search is an any-time method used to partially and stochastically search trees. We
refer readers not familiar MCTS to the work of [3]. MCTS was first used by [3] to plan in POMDPs,
building a tree in which nodes are beliefs and branches are actions. The tree represents numerous
sequences of simulated actions an agent can take at step t. Accumulated rewards and visit counts are
kept on each branch. Finding the branch with the maximum accumulated reward is an approximation
of Equation 1, where the infinite sum is replaced by a finite one.

MCTS is only defined to solve POMDPs with finite and discrete actions. We propose to generalise
the method to infinite and continuous actions introducing Continuous Belief Tree Search (CBTS),
consequently alleviating the need to discretise the action space prior to planning. CBTS redefines the

2

Algorithm 1 CBTS action selection algorithm
1: function vl = ACTIONSELECTION(v)
2: if length(Dv) < Amax then
3: a← Generate action with Eq. 3 and Dv

4: r ← Simulate a and get reward.
5: Augment data Dv with (a, r), and update bv with Dv .
6: return NewNode(b(f),p, r)
7: else
8: return BestChild(v)
9: end if

10: end function

discrete action selection method of MCTS, used to expand tree branches. The method proposed here
relies on dynamically sampling the space of actions at the most promising locations with BO. An
acquisition function is used to determine which actions are promising.

When an action a is simulated from node v of the belief tree τ and yields reward r, the resulting pair
{a, r} is used to learn a mapping from actions to rewards at a node level. Each node v stores data Dv

of previous action-reward pairs, which is used for generating new actions from node v. The problem
of choosing a new action a∗ for simulation from node v is formulated as follows:

a∗ = arg max
Θ

h(Θ|Dv) (2)

where Θ is an element of the continuous action space A and h is an acquisition function. Balancing
exploitation of high-reward action and exploration of unknown areas of the action space is achieved
by appropriately choosing h. The Upper-Confidence Bounds (UCB) function is generally used for
such balance in the BO literature. Equation 2 then becomes

a∗ = arg max
Θ

µ(bv(Θ)) + κσ(bv(Θ)) (3)

µ and σ are the mean and variance operators respectively, κ is a parameter balancing exploration and
exploitation, and bv is a belief v maintains on its action-reward mapping using a Gaussian Process
trained with Dv . Algorithm 1 provides pseudo-code for the action selection procedure of CBTS.

The more often node v is visited, the more accurate the action-rewards mapping of v gets. However,
the problem of when to stop generating additional actions can be challenging. In practice, one can
limit the maximum number of generated actions per node to a problem-specific fixed value Amax.
Another approach relies on stopping whenever a convergence criterion is met. For example, such
criterion can be ||Θi−1 − Θi|| < ε, where Θi−1 and Θi are the previously and newly generated
actions respectively, and ε is a user-specified distance.

Each node’s belief on the action-reward mapping is implemented with a Gaussian Process, of com-
plexity O(N3) with the number of actions generated per node. N is in practice very small, therefore
leading to negligible computation time compared to the state belief update, also of complexity O(N3)
with the number of observations. In practice, CBTS displays similar running times to MCTS.

5 Application to monitoring

The POMDP-for-monitoring formulation presented in this section was first proposed by [2] to solve
sequential Bayesian optimisation to carry out exploration guided by an acquisition function. Let us
now describe the POMDP used.

The state s = {f,p} is defined by the function to model f and the fully-observable robot’s
pose p. Continuous actions a are smooth trajectories T (Θ,p) defined by a set of parameters
Θ. The deterministic transition dynamics distribution T ({f,p},Θ, {f ′,p’}) models transitioning
from p to p’ with action Θ. Because transitions and f are independent, T can be rewritten as
T ({f,p},Θ, {f ′,p’}) = δ(T (Θ,p)|u=1−p’) which only depends on the endpoint of T (Θ,p). The
reward for executing action Θ in pose p is a sum over discrete trajectory locations:

R(Θ,p) =
∑

x∈T (Θ,p)

UCB(b(x)) + cost(Θ,p) , (4)

3

Figure 1: Space modelling domain with example of trajectory generated with CBTS (left). Black
rectangles are obstacles, the red polygon represents the robot’s starting pose, and background colours
reflect monitored function values ranging from low (blue) to high (red). Accumulated rewards of
space modelling experiment (right).

where the Upper Confidence Bounds function UCB is applied to the agent’s belief, and cost(Θ,p)
is the application specific cost of moving along T (Θ,p). UCB is selected as a reward function for
the exploration-exploitation behaviour it yields. Observations o ∈ R are noisy evaluations of f .
Similarly to rewards, observations are computed on a set of locations along T (Θ,p). The robot can
simulate observations by generating noisy samples from its belief b over f , which is maintained using
a Gaussian process.

5.1 Simulation results

We present experiments of a robot monitoring a fictive environmental variable by planning with
CBTS. The robot starts with no data and progressively enriches its belief of the monitored function by
gathering observations. The domain and fictive monitored function are shown in Figure 1, featuring
two high-valued areas separated by a wall. The reward function is defined in Equation 4. Additionally,
touching a wall yields a reward of −100. The robot is given full knowledge of where the obstacles
are located, but only receives information about the monitored function from noisy observations.
Exploration is therefore essential to receiving higher rewards in the long term.

Our experiments compare CBTS with an equivalent discrete action method (MCTS), both planning
with a horizon of 3. CBTS generates a maximum of Amax = 20 actions per node. MCTS using 5, 9
and 17 actions are compared to CBTS in terms of accumulated rewards. All results are averaged over
40 experiments.

Figure 1 reports accumulated rewards. Overall, CBTS performs better than discrete actions MCTS,
regardless of the number of actions used. The first 8 steps yield very similar rewards across all
methods, because the robot explores the left part of the domain first. After step 8, the robot is drawn
to explore the rest of the domain, and discrete actions are often not precise enough to navigate
through the corridor. This experiment shows that using continuous actions planner CBTS enables
robots to efficiently avoid obstacles and navigate more precisely than when planning with a discrete
action planner. MCTS with 5 actions outperformed its equivalent with 9 and 17 actions because
of the planner’s inability to efficiently construct a belief tree with higher branching factors. Better
performance could be achieved by exponentially increasing the number of MCTS iterations.

6 Conclusion

We proposed CBTS, a method using BO to solve continuous state-action-observation POMDPs.
CBTS uses BO to dynamically sample continuous action spaces, thus generating more precise
actions. Experiments on a monitoring problem show planning with continuous actions yields better
accumulated rewards, while enabling robots to avoid obstacles more efficiently.

4

References

[1] R. Marchant and F. Ramos, “Bayesian optimisation for informative continuous path planning,”
in Robotics and Automation (ICRA), 2014 IEEE International Conference on, pp. 6136–6143,
IEEE, 2014.

[2] R. Marchant, F. Ramos, and S. Sanner, “Sequential bayesian optimisation for spatial-temporal
monitoring.,” in UAI (N. L. Zhang and J. Tian, eds.), pp. 553–562, AUAI Press, 2014.

[3] D. Silver and J. Veness, “Monte-carlo planning in large pomdps,” in Advances in neural
information processing systems, pp. 2164–2172, 2010.

[4] R. D. Smallwood and E. J. Sondik, “The optimal control of partially observable markov
processes over a finite horizon,” Operations Research, vol. 21, no. 5, pp. 1071–1088, 1973.

[5] J. Pineau, G. Gordon, S. Thrun, et al., “Point-based value iteration: An anytime algorithm for
pomdps,” in IJCAI, vol. 3, 2003.

[6] R. He, E. Brunskill, and N. Roy, “Puma: Planning under uncertainty with macro-actions.,” in
AAAI, 2010.

[7] H. Kurniawati and V. Yadav, “An online pomdp solver for uncertainty planning in dynamic
environment,” in Robotics Research, pp. 611–629, Springer, 2016.

[8] S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa, “Online planning algorithms for pomdps,”
Journal of Artificial Intelligence Research, pp. 663–704, 2008.

[9] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “Despot: Online pomdp planning with regularization,”
in Advances in neural information processing systems, 2013.

[10] H. Kurniawati, D. Hsu, and W. S. Lee, “Sarsop: Efficient point-based pomdp planning by
approximating optimally reachable belief spaces.,” in Robotics: Science and Systems, Zurich,
Switzerland, 2008.

[11] A. Y. Ng and M. Jordan, “Pegasus: A policy search method for large mdps and pomdps,” in
Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence, pp. 406–415,
Morgan Kaufmann Publishers Inc., 2000.

[12] J. Van Den Berg, S. Patil, and R. Alterovitz, “Efficient approximate value iteration for continuous
gaussian pomdps.,” in AAAI, 2012.

[13] R. Platt Jr, R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief space planning assuming
maximum likelihood observations,” 2010.

[14] K. M. Seiler, H. Kurniawati, and S. P. Singh, “An online and approximate solver for pomdps
with continuous action space,” in IEEE International Conference on Robotics and Automation
(ICRA), 2015.

5

	Introduction
	Related work
	Background
	Continuous Belief Tree Search
	Application to monitoring
	Simulation results

	Conclusion

