
A Simple Recursive Algorithm for calculating
Expected Hypervolume Improvement

Alistair Shilton, Santu Rana, Sunil Kumar Gupta, Svetha Venkatesh
Center for Pattern Recognition and Data Analytics, Deakin University, Geelong, Australia

{ashilton,santu.rana,sunil.gupta,svetha.venkatesh}@deakin.edu.au

Abstract

In multi-objective optimisation, expected hypervolume improvement is a popu-
lar metric for assessing the merit of candidate solutions to guide the optimisation
process. However the computational cost of calculating the EHI can become pro-
hibitive, particularly as the number of objective functions increases. In this paper
we present a new recursive algorithm for calculating the EHI. We show that the al-
gorithm is simple to implement and significantly faster than alternative methods.

1 Introduction
In multi-objective Pareto optimisation the expected hypervolume improvement (EHI) is a popular
metric for measuring the merit of candidate solutions to guide the optimisation process [11, 15, 10].
However the computational cost of calculating the EHI remains a significant hurdle when applying
such approaches [12, 15], particularly as the number of objectives (and hence the dimensionality
of the hypervolume) becomes larger. In particular while heavily optimised algorithms are avail-
able for calculating EHI for up to 3 dimensions (for example [7]) the more general case remains
computationally challenging.
Most approaches to exactly calculating the EHI tend to be cell-based [3, 2, 1, 7]: the space is divided
into cells based on the set of vectors defining (dominating) the hypervolume, the contribution of
each cell calculated, and the result is the sum of all such contributions. Cell-based approaches can
be somewhat complex to implement in the general (n-dimensional) case - for example, in the IRS
algorithm [7] when calculating the contribution of a cell one must calculate correction factors by
enumerating all subsets of the axis {x, y, z, . . .} and calculating the dominated (projected) hyper-
volume for each cross-section so defined. Our aim in the present paper is to provide an algorithm for
calculating the EHI that is both fast (computationally efficient) and simple to implement. To achieve
this we eschew the standard cell-based approach and instead base our method on the Hypervolume
by Slicing Objectives algorithm (HSO, [14]), which is a recursive algorithm for calculating the
hypervolume (not the EHI) of a dominated set. The result is a fast and easy to implement recursive
algorithm for calculating EHI.

1.1 Notation
The integers modulo n ∈ Z+ are denoted Zn = {0, 1, . . . , n− 1} (Z0 = ∅). Column vectors are
written a,b, . . . ∈ An (n ∈ Z+), with elements denoted ai, bi, . . . ∀i ∈ Zn (indices start from 0,
C-style). Following Matlab, n : m = [n, n+ 1, . . . ,m]T for n ≥ m ∈ Z, and if a ∈ An and i ∈ Zpn
then ai = [ai0 , ai1 , . . . , aip−1

]T ∈ Ap.

2 Background
For x,y ∈ Rn we say that x is dominates y, written x � y, if xi ≥ yi ∀i ∈ Zn; and that x strongly
dominates y, written x � y, if x � y and x 6= y. For a finite set X ⊂ Rn we say that X dominates
y, written X � y, if ∃x ∈ X : x � y; and similarly X � y if ∃x ∈ X : x � y. For a finite set

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

X = {x0,x1, . . . ,∈ Rn} we define dom(X) to be the set of non-dominated points in X:
dom (X) =

{
xi ∈ X

∣∣ @j 6= i : xj � xi
}

We denote the Lebesgue measure (hypervolume) of Y ⊂ Rn by Vol (Y). The S-metric [16] (hyper-
volume [6, 9], Lebesgue measure [8, 5]) of a finite set X ⊂ (R+)n is defined to be:

Sn (X) = Vol (y ∈ Rn|X � y � 0) ,Sn (∅) = 0

Where we note that Sn (X) = Sn (dom (X)) and Sn ({y}) =
∏
i∈Zn

yi.

Given a finite set X ⊂ (R+)n and an additional vector y ∈ (R+)n the exclusive hypervolume [13]
of y relative to underlying set X, denoted ∆Sn (X|y), is defined as the change in S-metric induced
by adding the additional vector y to the set X:

∆Sn (X|y) = Sn (X ∪ {y})− Sn (X) ≥ 0

If y is drawn from some distribution P the expected hypervolume improvement (EHI), denoted
∆Sn (X| P), is the expected exclusive hypervolume given y ∼ P:

∆Sn (X| P) = E [∆Sn (X|y)|y ∼ P] ≥ 0

The expected hypervolume improvement is commonly used as a measure of merit of a proposed
solution [11, 15, 10].

3 Hypervolume and the HSO Algorithm
The Hypervolume by Slicing Objectives algorithm (HSO, [14]) algorithm is a recursive algorithm
for calculating Sn (X), where X =

{
x0,x1, . . .xM−1 ∈ (R+)

n}. Our first step is to re-express
HSO in the form of a recursive equation which will form the basis of our calculation of expected
hypervolume improvement (EHI). The HSO algorithm calculates Sn (X) as follows:

1. Prune (optional): remove all dominated points from X - that is, X→ dom (X).
2. Sort: sort the points from smallest to largest based on axis 0, so x00 ≤ x10 ≤ . . ., and divide

the hypervolume into slices as shown in figure 2.
3. Recurse: the total volume is the sum of the hypervolumes of all slices, where the volume

of each slice is the length of that slice (that is, xj0 − x
j−1
0) multiplied by the hypervolume

of the collapsed slice, which is obtained by excluding objective (axis) 0 as shown in figure
2. The base-case is n = 1 (1-dimensional), where the hypervolume is simply the length.

The prune and sort steps for our EHI calculation algorithm will be the same as the HSO algorithm.
It is convenient to define the following:

• Let m be the number of slices along axis 0 induced by dom (X) = {y, z, . . .} - that is, m
is the number of distinct values in the set {y0, z0, . . .}.
• For each slice j ∈ Zm define ij ∈ ZrjM , rj ∈ Z+, so that {xk|k = ij0, i

j
1, . . . i

j
rj−1} contains

all vectors in dom (X) lying on the upper boundary of slice j while the slices themselves
are sorted:

x
i00
0 < x

i10
0 < . . . < x

im−1
0
0 (sorting)

x
ij0
0 = x

ij1
0 = . . . = x

ijrj−1∀j ∈ Zm (boundary)

• For each slice j ∈ Zm define Xj ∈ (R+)n−1 to dominate collapsed slice j (see figure 2):

Xj =

{
x
ik0
1:n−1,x

ik1
1:n−1, . . . ,x

ikrk−1

1:n−1

∣∣∣∣ k ∈ Zm\Zj
}

where we have used Matlab notation x1:n−1 = [x1, x2, . . . , xn−1]T ∈ Rn−1 and recall
that indices are 0, 1, . . . , n− 1 (start from 0, C style).

• For each slice j ∈ Zm define the lower and upper bounds lj = x
ij−1
0
0 (l0 = 0) and uj = x

ij0
0

on axis 0; and the length Lj = uj − lj of slice j ∈ Zm (Lm = 0 for convenience).

Thus the hypervolume of collapsed slice j ∈ Zm is Lj Sn−1 (Xj), and we may write the formula
for calculating the S-metric, as implemented by the HSO algorithm, in recursive form:

Sn (X) =

{ ∑
j∈Zm

Lj Sn−1 (Xj) if n > 1
L0 if n = 1

(1)

which is straight-forward to code. Each step in the recursion reduces the dimensionality of the
problem by 1, eventually terminating at the trivial 1-dimensional base-case.

2

4 Exclusive Hypervolume
Given a set X = {x0,x1, . . . ∈ (R+)

n} and an additional vector y ∈ (R+)n the exclusive
hypervolume is defined as the change in hypervolume induced by adding y to X [13] - that is,
∆Sn (X|y) = Sn (X ∪ {y}) − Sn (X) ≥ 0. For notational convenience we define um = ∞,
Lm = 0, Xm = ∅. Let p ∈ Zm+1 be the slice in which the additional vector y lies - that is,
p = p ∈ Zm+1|lp ≤ y0 < up, where p = m corresponds to y0 being not less than x0 ∀x ∈ X. From
(1) it may be seen that ∀n > 1:

Sn (X ∪ {y}) =
∑
j∈Zp

Lj Sn−1 (Xj ∪ {y1:n−1}) + (y0 − lp)Sn−1 (Xp ∪ {y1:n−1}){
+ (up − y0)Sn−1 (Xp) +

∑m
j=p Lj Sn−1 (Xj) if p < m

}
It follows that:

∆Sn (X|y) =

{ ∑
j∈Zp+1

L̂j ∆Sn−1 (Xj |y1:n−1) if n > 1

max (0, y0 − L0) if n = 1
(2)

where L̂j = Lj ∀j ∈ Zp and L̂p = y0−lp. The base-case (n = 1) here is the exclusive hypervolume
(change in hypervolume) in 1-dimensional space, which is just the change in dominated length. The
exclusive hypervolume may be calculated directly using a slight variant of the HSO algorithm. The
prune and sort steps remain unchanged, and the position p may be trivially calculated. The structure
of the recursive equation is also much the same, except that the range of summation is different
(j ∈ Zp+1 rather than Zm), the length Lj has been replaced by L̂j , and the base case differs.

5 Expected Hypervolume Improvement
In multi-objective optimisation we often wish to calculate the expected hypervolume improve-
ment. This is similar the the exclusive hypervolume, except that y is treated as a random vari-
able rather than a known quantity. Suppose y ∼ P , where P is some distribution, such that
the scalar components y0, y1, . . . are drawn from independent distributions yi ∼ Pi ∀i ∈ Zn (so
P = P0 ⊗ P1 ⊗ . . . ⊗ Pn−1). Further assume that ∀i ∈ Zn the distributions Pi are continuous
distributions with densities fi (z). The expected hypervolume improvement is:

∆Sn (X| P) = E [∆Sn (X|y)|y ∼ P]
=
∫∞
z0=0

. . .
∫∞
zn−1=0

∆Sn (X| z) f0 (z0) . . . fn−1 (zn−1) dz0 . . . dzn−1
=
∑
p∈Zm+1

∆Sn;p (X,P) if n > 1

where, recalling that l0 = 0, um =∞ and uj = lj+1, we have defined:

∆Sn;p (X| P) =
∫ up

z0=lp

∫∞
z1=0

. . .
∫∞
zn−1=0

∆Sn (X| z) f0 (z0) f1 (z1) . . . dz0 . . . dzn−1

Using (2) it follows that:

∆Sn;p(X|P)=
∫up

lp
(z−lp)f0(z)dz∆Sn−1(Xp|P1:n−1)+

∑
j∈Zp

Lj
∫up

lp
f0(z)dz∆Sn−1(Xj |P1:n−1)

where we have slightly abused Matlab notation by denoting P1:n−1 = P1 ⊗ P2 ⊗ . . . ⊗ Pn−1.
Combining these results, and recalling that Lm = 0, Xm = ∅, it may be seen that:

∆Sn (X| P) =

{ ∑
j∈Zm+1

L̃j ∆Sn−1 (Xj | P1:n−1) if n > 1

L̃m if n = 1
(3)

where L̃j =
∫ uj

lj
(z − lj) f0 (z) dz + Lj

∫∞
uj
f0 (z) dz ∀j ∈ Zm+1. This recursive equation allows

us to calculate EHI using a simple variant of the HSO algorithm. There are two distinguishing
features here that differ from the HSO algorithm, namely that the range of summation is j ∈ Zm+1

(as opposed to j ∈ Zm in (1)); and the lengths Lj used in the HSO algorithm must be replaced by the
distribution-dependent scaling factors L̃j . We call this variant of the HSO algorithm for calculating
EHI the ∆HSO algorithm.

Depending on the distribution the density-dependent scaling factors L̃j may be derived in

3

10 20 30 40 50 60 70 80 90 100
10-8

10-6

10-4

10-2

100

102

10 20 30 40 50 60 70 80 90 100
10-8

10-6

10-4

10-2

100

102

10 20 30 40 50 60 70 80 90 100
10-8

10-6

10-4

10-2

100

102

10 20 30 40 50 60 70 80 90 100
10-8

10-6

10-4

10-2

100

102

Figure 1: Average EHI computation times (sec-
onds) versus dataset size. ConvexSpherical
on left, ConcaveSpherical on right,
∆HSOfast versus IRS (dashed line) on
top; ∆HSOfast versus ∆HSO (dotted line) on
bottom. Key: · (n = 1), ◦ (n = 2), × (n = 3),
+ (n = 4), ∗ (n = 5), � (n = 6), ∇ (n = 7).

Figure 2: HSO algorithm operational example.
Points are sorted according to axis x0 to ob-
tain the index vectors i0, i1, i2. The block (top
left) is then divided into 3 slices (bottom) that
are then collapsed by removing axis x0. The
hypervolume is the sum of the slice length (on
x0 axis) multiplied by the hypervolume of the
collapsed slice - i.e. S3 (X) = 3S2 (X0) +
1S2 (X1) + 2S2 (X2).

closed-form. For example, suppose Pi = N
(
µi, σ

2
i

)
∀i ∈ Zn. It follows that fi(z) =

(2σ2
i π)−1/2 exp(−(z − µi)2/(2σ2

i)), and it is not difficult to show that:∫M
m
fi (z) dz= 1

2

(
erf

(
M−µi√

2σ2
i

)
− erf

(
m−µi√

2σ2
i

))
∫M
m

(z−m)fi(z)dz= m−µi

2

(
erf

(
m−µi√

2σ2
i

)
−erf

(
M−µi√

2σ2
i

))
+ σi√

2π

(
exp
(
− (m−µi)

2

2σ2
i

)
−exp

(
− (M−µi)

2

2σ2
i

))
and hence:

L̃j = σ0e
(
lj−µ0√

2σ2

)
− σ0e

(
uj−µ0√

2σ2

)
∀j ∈ Zm, L̃m = σ0e

(
lm−µ0√

2σ2

)
(4)

where e (z) = z√
2

(erf (z)− 1) + 1√
2π

exp
(
−z2

)
.

6 Experimental Validation
In our experiments we have compared three algorithms: ∆HSO (our algorithm), ∆HSOfast (an opti-
mised version of our algorithm that (a) retains a cache of calculated Eij = σje((x

i
j − µj)/(

√
2σj))

values and (b) pre-calculates index vectors ij etc that depend only on X) and IRS (the algorithm de-
scribed in described [7]). All simulations were written in C++. We have used the ConvexSpherical
and ConcaveSpherical datasets from [4] with 1 ≤ n ≤ 9.
We have validated our method by comparing the output of ∆HSO with IRS for all experiments.1
Figure 1 shows the average computation time (computed over 1000 sequential evaluations each) for
a single evaluation of EHI for ∆HSO, ∆HSOfast and IRS algorithms. As can be seen from these
results ∆HSO is significantly faster than IRS, and moreover ∆HSOfast is faster than ∆HSO.

7 Conclusion
We have presented a simple recursive algorithm (∆HSO) for calculating the expected hypervolume
improvement (EHI) using a variant of the recursive hypervolume slicing optimisation (HSO) algo-
rithm used for calculating hypervolume (not EHI). In contrast to most cell-based approaches, our
method is recursive and therefore very easy to implement. We have shown that the computational
cost of our approach in practise is better than that of comparable cell-based algorithms (IRS). We
have also presented an optimised form of ∆HSO, called ∆HSOfast, and studied the relative merits
of ∆HSOfast and ∆HSO.

1For validation of results we also implemented a simplified version of [1]. As we implemented only a
simplified version of this algorithm (using binary cells rather than WFG generated ones) we have not reported
timings as they are not representative of the full version.

4

References
[1] Ivo Couckuyt, Dirk Deschrijver, and Tom Dhaene. Fast calculation of multiobjective proba-

bility of improvement and expected improvement criteria for pareto optimization. Journal of
Global Optimization, 60(3):575–594, 2014.

[2] Michael Emmerich and Jan-Willem Klinkenberg. The computation of the expected improve-
ment in dominated hypervolume of pareto front approximations. Technical report, Leiden
University, 2008.

[3] Michael T. M. Emmerich, André H. Deutz, and Jan Willem Klinkenberg. Hypervolume-based
expected improvement: Monotonicity properties and exact computation. In Proceedings of the
2011 IEEE Congress on Evolutionary Computation (CEC), pages 2147–2154, 2011.

[4] Michael T. M. Emmerich and Carlos M. Fonseca. Computing Hypervolume Contributions in
Low Dimensions: Asymptotically Optimal Algorithm and Complexity Results, pages 121–135.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[5] Mark Fleischer. The measure of pareto optima: Applications to multi-objective metaheuristics.
In International Conference on Evolutionary Multi-Criterion Optimization, pages 519–533,
2000.

[6] Simon Huband, Phil Hingston, Lyndon While, and Luigi Barone. An evolution strategy with
probabilistic mutation for multi-objective optimisation. In Proceedings of the IEEE Congress
on Evolutionary Computation, volume 4, pages 2284–2291, 2003.

[7] Iris Hupkens, André Deutz, Kaifeng Yang, and Michael Emmerich. Faster exact algorithms for
computing expected hypervolume improvement. In International Conference on Evolutionary
Multi-Criterion Optimization, pages 65–79. Springer, 2015.

[8] Marco Laumanns, Eckart Zitzler, and Lothar Thiele. A unified model for multi-objective
evolutionary algorithms with elitism. In Proceedings of the 2000 Congress on Evolutionary
Computation, volume 1, pages 46–53, 2000.

[9] Robin Charles Purshouse. On the Evolutionary Optimisation of Many Objectives. PhD thesis,
University of Sheffield, 2003.

[10] Koji Shimoyama, Shinkyu Jeong, and Shigeru Obayashi. Kriging-surrogate-based optimiza-
tion considering expected hypervolume improvement in non-constrained many-objective test
problems. In Proceedings of 2013 IEEE Congress on Evolutionary Computation, 2013.

[11] Ofer M. Shir, Michael Emmerich, Thomas Back, and Marc J. J. Vrakking. The application
of evolutionary multi-criteria optimization to dynamic molecular aligment. In Proceedings of
2007 IEEE Congress on Evolutionary Computation, 2007.

[12] Tobias Wagner, Michael Emmerich, André Deutz, and Wolfgang Ponweiser. On expected-
improvement criteria for model-based multi-objective optimization. In Proceedings of the 2010
International Conference on Parallel Problem Solving from Nature, pages 718–727, 2010.

[13] Lyndon While, Lucas Bradstreet, and Luigi Barone. A fast way of calculating exact hypervol-
umes. IEEE Transactions on Evolutionary Computation, 16(1):86–95, 2012.

[14] Lyndon While, Philip Hingston, Luigi Barone, and Simon Huband. A faster algorithm for cal-
culating hypervolume. IEEE Transactions on Evolutionary Computation, 10(1):29–38, 2006.

[15] Martin Zaefferer, Thomax Bartz-Beielstein, Boris Naujoks, Tobias Wagner, and Michael Em-
merich. A case study on multi-criteria optimization of an event detection software under lim-
ited budgets. In Proceedings of the 2013 International Conference on Evolutionary Multi-
Criterion Optimization, pages 756–770. Springer, 2013.

[16] Eckart Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods and Appli-
cations. PhD thesis, Swiss Federal Institute of Technology Zurich, 1999.

5

