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Abstract

Bayesian optimization operates sequentially recommending single evaluation set-
ting each time. Many practical applications, however, have the facility of evaluat-
ing a batch of multiple settings simultaneously. Current batch Bayesian methods
are mostly heuristic based and none have considered heteroscedasticity of the un-
known objective function. We base our method on extracting the most promising
batch of recommendations by searching across different smoothness assumptions
which is realized through different length-scales of the Gaussian process covari-
ance function. Theoretical analysis suggests that the proposed batch method has
tighter regret bound than a pure sequential approach. Further improvement is
brought by introducing a novel multi-armed bandit (MAB) based length-scale se-
lection procedure, resulting in a more computationally efficient algorithm. We
evaluate our method by minimizing three heteroscedastic benchmarked test func-
tions and tuning the hyperparameters of two machine learning algorithms.

1 Introduction

Bayesian optimization has evolved as an efficient framework for global optimization of expensive
objective functions [Mockus, 1994, Brochu et al., 2010b]. It is particularly useful when users have
access only to the noisy functional evaluations of a black-box function. Recently, it has found
applications in a variety of domains including gait optimization of robots [Lizotte et al., 2007],
design of user interfaces [Brochu et al., 2010a], environmental monitoring [Marchant and Ramos,
2012] and tuning the hyperparameters of machine learning algorithms [Snoek et al., 2012].

Bayesian optimization adopts a sequential strategy for optimizing the objective functions. The pure
sequential strategy, however, has some practical limitations. With the availability of parallel infras-
tructures, experiments can be conducted in parallel. In wet-lab experiments, users have duplicated
set-ups for performing experiments in parallel. In hyperparameter tuning of machine learning mod-
els, multiple cores/machines can be used for training and validating the models. Parallel search,
when effectively utilized, can potentially save significant time by reducing the number of iterations.

Different strategies have been proposed to recommend a batch of multiple settings for experimenta-
tion. Azimi et al. [2012] proposed a multiple recommendation method by collecting the first sample
in the batch by optimizing the acquisition function and selecting other samples in the batch by gener-
ating fake observations using the Gaussian process model. González et al. [2016] locally penalized
the maximum of the acquisition function to collect the elements in the batch. These methods have
two drawbacks: they effectively choose multiple maxima of the same acquisition function as the
points to be explored, and all methods assume that the underlying variation is uniform and that
the scale is known. Moreover, none of the methods have shown an improved convergence property
associated with the batch recommendation.

Scales are unknown and prone to be mis-estimated from small numbers of observations, particularly
at the start. Additionally, many real world functions are often heteroscedastic. In the context of
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batch Bayesian optimization, developing a theoretically guaranteed algorithm that is also suitable
for heteroscedastic functions is still an open problem. Addressing this, we propose our method,
Multi Scale Multiple Recommendation (MSMR).

2 Batch Bayesian optimization using Multi-scale Multi-recommendation

In Bayesian optimization, underlying function is probabilistically modeled using a Gaussian process
prior with a zero mean function and a covariance function. Without loss of generality, the covariance
function we choose is the Squared Exponential kernel. The critical parameter that controls the
type of functions a Gaussian process can suitably model is the kernel length-scale. Practically,
it may not be possible to infer the appropriate length-scales from small observational data in the
beginning. This motivates us to investigate the use of combining more than one Gaussian processes
with different length-scales.

To begin, let us sample a large number of length-scales θ1:n within the range θ ∈ [θL,θU ] . We build
a GP for each length-scale and subsequently find the most promising location to sample for the next
iteration by optimizing their individual acquisition functions. Let us say that, we can only conduct
m evaluations per iteration. The set of all candidate sample locations is then reduced to the required
batch size m by finding the most agreed sample locations among them.

min
x∗ck
∈X ,x∗

i
∈x∗ck

||x∗i −x∗ck
|| (1)

where x∗ck
is the medoid of the cluster k, where k = 1,2, ..m and i denotes the index of samples

and it varies from i = 1,2..n. This is a clustering problem which can be approximately solved by
k-medoids [Park and Jun, 2009].

2.1 Theoretical Analysis of Proposed Method

The main line of reasoning is based on Theorem 1 of Wang and de Freitas [2014], where the authors
have proved that the EI [Mockus et al., 1978] based Bayesian optimization converges irrespective to
the choice of a fixed length-scale. The theorem guarantees sub-linear growth in the cumulative regret
as long as the length-scale is within a pre-specified bound [θL,θU ]. This prima facie shows that for
a pure sequential method where solutions are obtained based on different length-scales at different
iterations, the optimization is still guaranteed to have sub-linear growth in cumulative regret. Using
the ideology, “information never hurts”, we show that our batch Bayesian optimization method, in
fact, have a superior convergence than a pure sequential method.

Algorithm 1 MSMR

1: Bounds on θ-(θL,θU ),
2: Initial θ1:n ∼ U [θL,θU ]
3: m - Number of recommendations
4: for t= 1,2, ..T do
5: θ∗1:η= MAB_Scale(θi=1:n,η,µ

′
t,σ

2′
t )

6: x∗i=1:η = argmaxxEI(x|GP (D,θ∗i=1:η))
7: x∗i=1:m= k-medoids(x∗i=1:η , m)
8: Evaluate y∗1:m = f(x∗1:m) in parallel.
9: D←D∪{x∗1:m,y

∗
1:m}

10: end for

We can think of MSMR as a principal sequence
of one observation per batch and auxiliary data
containing the rest of the batch. Without loss
of generality let us also assume that the prin-
cipal sequence contains the observations with
the lowest regret. Essentially, MSMR would be
having consecutive system with less variance
due to the presence of the additional observa-
tions, compared to a pure sequential approach.
Lemma 1 guarantees that. Rest of the reasoning
in Lemma 2 and finally Theorem 1 culminates
from the result of Lemma 1.

We use all the assumptions made by Wang and
de Freitas [2014] in stating our Theorem. As-
sume multiple kernel length-scales θi are se-
lected such that θL ≤ θi ≤ θU .

Lemma 1. maxx∈X σ
′2
t−1(x;θL)<maxx∈X σ2

t−1(x;θL) where t > 1, σ
′2
t−1(x;θL) denotes variance in

MSMR method and σ2
t−1(x;θL) denotes the variance for a pure sequential approach.
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Proof. Intuitively this happens as the iterations of MSMR beyond the first time would have more
observations and thus have a reduced maximum variance. The detailed proofs are available in a
supplementary material1.

Lemma 2. γ
′θL ≤ γθL , where γ

′θL denotes maximum information gain for MSMR method and γθL

for the pure sequential method.

Proof. Follows from previous Lemma and Lemma 7 of Wang and de Freitas [2014] (see supple-
mentary material1 for details).

Theorem 1. The cumulative regret for MSMR achieves a tighter upper bound than pure sequential
optimization i.e.,

β
′
T

√
Tγ
′θL < βT

√
TγθL (2)

where β′T = 2log( Tσ2 )γ
′θL
T−1 +ΛT +

√
γ

′θL
T−1 +C2

f
f

f
H
θU(X )

is for MSMR, βT = 2log( Tσ2 )γθLT−1 +

ΛT +
√
γθLT−1 +C2

f
f

f
H
θU(X )

is for a pure sequential approach, C2 :=
∏d
i=1

θUi
θL
i

, θL ≤ θt ≤ θU , t≥ 1,

f(.) ∈HθU (X ) and ΛT =
√

8log( Tσ2 ) log1/2(4T 2π2/6δ)
√
C2

f
f

f
HθU

.

Proof. The proof follows from Lemma 2 and it is straightforward to see that β′T < βT . Refer sup-
plementary material1 for further details.

The bounds on cumulative regret for pure sequential Bayesian optimization is derived in Theorem
1 of Wang and de Freitas [2014] as RT = O

(
βT
√
TγθL

)
with probability at least 1− δ. From

our theorem, we can see that regret bound for our batch method is tighter. Hence our method with
multiple recommendations is expected to have a faster convergence.

2.2 Selection of Optimal Length-Scales using Multi-armed Bandit (MAB) Formulation

We propose a multi-armed bandit formulation to devise a scheme that that favors the length-scales
that have resulted in a good value of the function in the past iteration whilst, we still allow occasional
selection of the length-scales for which not much observations are available. The observed reward
for different clusters is calculated as,

rck,s = f(x∗ck
)−f(x+) (3)

where x∗ck
denotes the cluster median, k denotes the cluster index, s denotes the number of samples

belonging to cluster c and x+ is the current best available observation. The reward r denotes the
amount of improvement in the function values of the collected samples x∗ over the current best
observation x+. The length-scales are selected such that it offers the best expected reward at each
iteration. The goal of optimization is to maximize the cumulative expected reward:

argmaxE
∑

r(x∗/θ) (4)

We assume that the rewards follow a Gaussian distribution r∼N (µ,σ2). The optimization problem
in Equation (4) can be solved using a strategy based on upper confidence bound, UCB [Auer, 2003]
criteria. The overall algorithm for MSMR is presented in Algorithm 1.

3 Experiments

We conduct experiments on minimizing three benchmarked test functions for global optimization
and later for tuning the hyperparameters of two machine learning algorithms. The baselines are EI
and UCB variants of LP [González et al., 2016], PRED [Azimi et al., 2012]. For all the baselines,
we used the implementations in GPyOpt2.

1http://bit.ly/2f81DMI
2https://github.com/SheffieldML/GPyOpt
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Figure 1: (a): Egg-Holder Function, (b): Hartman6 Function

Table 1: Average and the standard error of best minimum value for gSobol Function: #Dim denotes
the dimension, #Rec denotes the number of recommendations in a batch

#Dim 2 5 10

#Rec 5 10 5 10 5 10
EI 0.45(0.028) 66.75 (23.39) 2386.86 (722.24)

UCB 0.44(0.065) 34.91 (9.01) 3287.32 (969.64)

LP-EI 0.3 (0.01) 0.27 (0.006) 12.01 (3.38) 8.23 (1.68) 1166.48 (399.61) 1221.64 (742.76)

LP-UCB 0.27 (0.01) 0.26 (0.003) 18.03 (3.82) 17.04 (3.50) 1832.75 (996.34) 1155.76 (498.74 )

PRED-EI 0.28 (0.01) 0.27 (0.007) 10.23 (2.54) 9.49 (2.14) 826.81 (278.31) 895.56 (312.42)

PRED-UCB 0.29 (0.006) 0.27 (0.008) 6.52 (1.87) 7.3482 (1.26) 218.85 (80.90) 56.53 (21.65)

MSMR 0.26 (0.004) 0.26 (0.002) 1.14 (0.16) 2.24 (0.32) 8.56 (3.18) 17.98 (6.42)

We evaluate different methods on the task of minimizing a highly heteroscedastic Egg-Holder func-
tion. The two dimensional Egg-Holder function has many local minima which makes it difficult
to minimize. We run 30 iterations with a batch size of 5 per iteration. The results are averaged
across 10 different initial settings. The average best found minimum value at each iteration with
standard error is plotted in Figure 1a. Our method, MSMR, outperforms other baselines [Azimi
et al., 2012, González et al., 2016]. MSMR is able to achieve a significant minimum value of
the Egg-Holder function within 10 iterations. Similarly, experiment is repeated for another 6 di-
mensional multi-modal benchmarked test function, Hartman6. MSMR method outperforms all the
other methods as plotted in Figure 1b. We also evaluate the performance of the different methods
across varying dimensions and batch sizes on another test function, gSobol. In this experiment,
EI and UCB denotes the pure sequential Bayesian optimization. Table 1 clearly shows that all
the batch methods perform better than the pure sequential Bayesian optimization. As the dimen-
sion of the problem increases, MSMR performs better than all the other baselines [Azimi et al.,
2012, González et al., 2016]. MSMR exhibits a stable performance even with higher batch size.

Table 2: Average best model performance
achieved with standard error

Methods
MLP (% Test Error) Random Forest (RMSE)

MNIST Protein Structure

LP-EI 3.42 (0.12) 3.72(0.051)

LP-UCB 4.05 (0.33) 3.77(0.09)

PRED-EI 4.2 (0.55) 3.95(0.16)

PRED-UCB 4.16 (0.23) 3.78(0.11)

MSMR 3.2 (0.12) 3.6(0.01)

We tune four hyperparameters of Random For-
est and six hyperparameters of Multi-Layered
Perceptron (MLP) on two benchmarked real-
world datasets. We run both the experiments
for 30 iterations with 5 recommendations each
iteration. All the methods are evaluated on the
basis of the best model performance achieved
within the allotted number of iterations. Aver-
age of the best achieved model performances
with the standard errors across 5 different splits
of train and test data are shown in Table 2.
MSMR is able to find the best hyperparameter
settings with minimum root mean squared error (RMSE) and test error.
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4 Conclusion

In this paper we proposed a novel theoretically guaranteed multiple recommendation algorithm for
Bayesian optimization. A large set of promising sample locations is extracted from multiple Gaus-
sian processes each having different smoothness assumption enforced by the choice of different
kernel length-scales. This large set is then reduced to a smaller set to the size of the required batch
size by finding the most agreeable sample locations. We further provide theoretical guarantee of the
proposed method by deriving a tighter regret bound compared to the pure sequential approach. Fur-
ther the efficiency of our method is improved by proposing a scheme based on multi-armed bandits
to select a smaller subset of optimal length-scales at each iteration. Experiments demonstrate the
superior performance of the proposed method compared to other batch methods.
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