A Physically-grounded and Data-efficient Approach
to Motion Prediction using Black-box Optimization

Shaojun Zhu and Abdeslam Boularias
Department of Computer Science
Rutgers University
{shaojun.zhu, abdeslam.boularias}@cs.rutgers.edu

Abstract

In this paper, we introduce a practical, data-efficient approach for identifying
sliding models of objects. In the proposed approach, a robot randomly pokes
an unknown object and observes how the object moves under different force
magnitudes and directions. Using a physics engine, the robot seeks to identify
the inertial and friction parameters of the object by simulating its motion under
different values of the parameters and identifying those that result in a simulation
that matches observed motions. We describe the proposed method here and report
some preliminary experimental results, using a real robot, which are encouraging.

1 Introduction

Predicting object motion under physical interaction is one of the key challenges in applying robotics
in everyday life. Recent advances in Deep Neural Networks(DNNs) motivated several works to apply
DNN:ss for such problems. However, these approaches usually require large amounts of training data,
from either simulation or real-world roll-outs.

We are proposing a data-efficient approach for motion prediction by utilizing a physics engine and
learning the physical parameters through black-box Bayesian optimization. We are motivated by
recent work[6, [7] that uses physics engines generating data for physical stability prediction.

Specifically, we are interested in predicting the motion of an object under the action of a robotic hand.
First, we use a real robot to perform some random poking action with an object on a tabletop[2].
We record both the initial and final configurations of the object and the hand. Instead of learning
the object’s motion explicitly, we use a Bayesian optimization technique to identify related physical
parameters like mass and friction through the physics engine simulation.

To predict the motion of the object under a new action, we use the learned parameters to simulate the
action in the physics engine and use the result of the simulation as our prediction.

2 Proposed Approach

To solve the problem of modeling mechanical properties of objects, we propose an online learning
approach to identify mass and sliding models of objects as a Bayesian optimization problem. The
goal is to allow the robot to use predefined models of objects, in the form of prior distributions, and to
improve the accuracy of these models on the fly by interacting with the objects. The learning process
should be in real time because it takes place simultaneously with the physical interaction.

Figure [[|shows an overview of the proposed approach. The first step consists in using a pre-trained
object detector to detect the different objects present in the scene. We are using a SIFT-based tracker
to detect objects and estimate their poses, by mapping them to a knowledge base of pre-existing 3D

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Physical interaction

&

< <
ST || M

tribution 0 model distribution

late with model 9% simulate with model *

9
%

simulation -~ 5 simulation—

error ez 2 W

position 5,y = f (1, iz, 02)

Simulation

se the final model distributiol
o find force it in new state x
|

s:mu/a'naf&
error e :

tet+ 1k pOSition Tty =

position ., = f(xe, e, 0

Figure 1: Overview of the proposed approach for learning object models with a physics engine

mesh models. We propose to augment the 3D mesh models with mechanical properties of objects.
The mechanical properties correspond to the mass and the static and kinetic friction coefficient of
each subpart of a given object. These properties are represented as a d-dimensional vector 6. A prior
distribution P on 6 is used instead of a single value of 6, because different instances of the same
category usually have different mechanical properties.

The online learning algorithm takes as input a prior distribution P; on model parameters . Dis-
tribution P; is calculated based on the initial distribution P, and a sequence of observations
(o, oy T1, 41, - -+, Tt—1, -1, Tt), Wherein x; is the 6D pose (position and orientation) of the
manipulated object at time ¢ and y, is a vector describing a force applied by the robot’s fingertip on
the object at time ¢. Applying a force y; results in changing the object’s pose from z; to ;1.

Given a prior distribution P, and a new observation (x, ft441, Z¢+1), we use a physics engine to
estimate a posterior distribution P;; on the model parameters §. We are currently using the Bullet
physics engine in our preliminary experiments [[1]. The posterior distribution P;; is obtained by
simulating the effect of force 11,11 on the object under various values of parametersf and observing
the resulting positions ;4. The goal is to identify the model parameters that make the outcome
Z¢41 of the simulation as close as possible to the actual observed outcome x41. In other terms, we
solve the following black-box optimization problem:

* . de
0" = argmin £(0) < |fersr — flar, 1, 0)]2,

wherein z; and x4 are the observed poses of the object at times ¢ and ¢ + 1, p; is the force that
moved the object from x; to 2441, and f(x¢, e, 0) = 141, the simulated pose at time ¢ 4 1 after
applying force pi; in pose ;.

The model parameters 6 can be limited to a discrete set, i.e. 6 € {0',02,...,0"} def O. A naive
approach to solving this problem consists in systematically simulating all the parameters 6° in ©,
simulating the effect of force ji; on the object with parameters §°, and comparing the predicted
pose f(z¢, j1¢, 0%) to the actual pose ;1. However, this would be inefficient because the size of ©
should be relatively high given that the dimension d of the parameter space is typically high. Each
individual simulation is also computationally expensive. Therefore, we need to minimize the number
of simulations while searching for the optimal parameters. Moreover, the optimization problem above
is ill-posed, as is the case in all inverse problems. In other terms, there are multiple model parameters
that can explain an observed movement of an object. Therefore, our algorithm returns a posterior
distribution P, on the set of possible parameters O, instead of returning a single answer.

We formulate this problem in the Bayesian optimization framework, and we use the Entropy Search
technique originally presented in [[J]. We specifically use a greedy-search variant that we proposed
in [3]] and that is more efficient computationally. This method is explained below.

To solve the optimization problem above, we need to learn the error function E from a minimum num-
ber of simulations, using a sequence of parameters 61,0, ..., 0, € O. To choose these parameters
efficiently, we maintain a belief about the actual error function. This belief is a probability measure
p(E) over the space of all functions F : R? — R. We use a Gaussian Process (GP) to represent the
belief p, which is sequentially updated using the errors F/(6;) computed from simulation using model
parameters 6;. We refer the reader to [9]] for more details on how Gaussian processes are updated.
Belief p is initialized at each time ¢ using prior P;, the model distribution from the previous time-step.

After simulating the object’s motion with different model parameters 61, 6,, ...,), updating the
belief p using the computed simulation errors, we explain here how the next simulation parameter
Or1 is selected. Belief p implicitly defines another distribution P,,;,, on the identity of the optimal
model parameter 6%,

de . i i

Prin(0) = P(0 = arg min E(0')) = / p(E)gico (o) H(E(0") — E(0))dE,
6'cO E:RISR

where H is the Heaviside step function, i.e. H(E(0%) — E(0)) = 1if E(") > E(6)

and H (E(0") — E(f)) = 0 else.

Unlike p(FE), the distribution of simulation error E modeled as a Gaussian Process, the distribution
P.in does not have a closed-form expression. Therefore, we use Monte Carlo for estimating P,,,;y,
from samples of E(#?) for each # € ©. Specifically, we sample vectors containing the values that
E takes, according to the learned Gaussian process, in each model parameter in ©. P,,;,,(0?) is
estimated by counting the fraction of sampled vectors of the values of E/ where #° happens to have
the lowest value.

We choose the model parameter € that has the highest contribution to the current entropy of P,
i.e. with the highest term —P,,;,(0) log (Pmm (9)) as the next model parameter to evaluate in

the simulation. We refer to this method as the Greedy Entropy Search method because it aims at

decreasing the entropy of the belief P,,;,. This process is repeated until the entropy of P,,;, does

not change much or until the simulation’s time budget is consumed. After that, we use P,,;, as the
new belief P, on the model parameters. This new belief is used for planning an action ;1 which

will move the object to a new pose x4, and the same process is repeated all over again.

3 Experiment

3.1 Data Collection and Evaluation Metrics

We use a Reflex SF robotic hand mounted on a Motoman SDAIOF arm to perform the real-world
roll-outs. In this preliminary experiment, we learn the mass and the friction coefficient of a simple
rigid box (an Expo eraser). Simtrack[8] is used to track the object and provide the initial and final
poses of the object. Fifteen random poking actions were performed. Six were discarded due to
inaccurate tracking caused by occlusions. Out of the remaining nine actions, we used six for training
and the other three for testing. To measure the accuracy of the learned model, we compute the distance
between the predicted pose of the object (3D position and 3D orientation) and the real observed pose.

3.2 Results

We compare the results of our Bayesian optimization method with random search in Figure[2] Random
Search is performed by searching in the same parameter space as the Bayesian optimization. The
time budget for both methods is 30 minutes. Both methods used the same three training samples and
tested on the three test samples. During training, the objective function is the sum of three distances
as defined in Sec. [3.1] We ran both methods ten times and reported the mean and stand deviation
of training error. The result shows that Bayesian optimization achieved both lower error and faster
convergence.

We also report the prediction error as a function of the number of training samples. We compare the
prediction errors of models trained with one sample, three samples and all six samples in Figure

Perfomance Comparison

0.30

1 Random Search Sando_m Sgar_ch_]
0.25} |0 Bayesian Optimization | 013} ayesian Optimization

2 015t
&

training error

0.10f

0.05F

0.00

testl test2 test3 0075 5 0 15 20 25 30
time (mins)

Figure 2: Comparison between Bayesian optimization method with random search. Bayesian
optimization achieved both lower error and faster convergence.

Test action 1 Test action 2 Test action 3

008} ——
0.07] 0.20

0.06]

S o0s
003
002
o

Figure 3: Pose prediction error as a function of the number of training samples

With more training samples, the error generally decreases. For test action 1 and 2, the error increased
by a small margin when training with all six samples comparing to training with three. This could be
because of the small size of the training set that one sample could lead to bias in the model. Increasing
the size of the training data will be a focus for the next step of this work. Test results with the model
trained with 6 samples can be found here: http://bit.1ly/2dRgutl.

4 Future Work

The immediate next step in this work is learning model parameters with a larger number of examples.
We are also considering experiments with various objects as well as utilizing existing large scale
datasets[4} [T0]]. Additionally, we are investigating efficient ways for handling model parameters of
non-homogenous objects. In this work, we considered only random exploratory actions, the learned
predication model should eventually be used for control and action planning [4].

References

[1] Bullet physics engine. [Online]. Available: www.bulletphysics.org,

[2] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine. Learning to poke by poking: Experiential learning
of intuitive physics. arXiv preprint arXiv:1606.07419, 2016.

[3] A.Boularias, J. A. Bagnell, and A. Stentz. Efficient optimization for autonomous robotic manipulation of
natural objects. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,, 2014.

[4] C.Finn and S. Levine. Deep visual foresight for planning robot motion. arXiv preprint arXiv:1610.00696.

[5] P. Hennig and C. J. Schuler. Entropy Search for Information-Efficient Global Optimization. Journal of
Machine Learning Research, 13:1809-1837, 2012.

[6] A.Lerer, S. Gross, and R. Fergus. Learning physical intuition of block towers by example. In Proceedings
of the 33nd International Conference on Machine Learning, ICML 2016, pages 430438, 2016.

[71 W.Li, S. Azimi, A. Leonardis, and M. Fritz. To fall or not to fall: A visual approach to physical stability
prediction. 2016.

[8] K. Pauwels and D. Kragic. Simtrack: A simulation-based framework for scalable real-time object pose
detection and tracking. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2015.

[9] C.E.Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2005.

[10] K.-T. Yu, M. Bauza, N. Fazeli, and A. Rodriguez. More than a million ways to be pushed: A high-fidelity
experimental data set of planar pushing. arXiv preprint arXiv:1604.04038, 2016.

http://bit.ly/2dRgut1
 www.bulletphysics.org

	Introduction
	Proposed Approach
	Experiment
	Data Collection and Evaluation Metrics
	Results

	Future Work

