
Bayesian Adaptive Direct Search:
Hybrid Bayesian Optimization for Model Fitting

Luigi Acerbi
Center for Neural Science

New York University
luigi.acerbi@nyu.edu

Wei Ji Ma
Center for Neural Science & Dept. of Psychology

New York University
weijima@nyu.edu

Abstract

Model fitting in fields such as computational neuroscience often implies a difficult
black-box optimization problem over complex, possibly noisy parameter land-
scapes. Bayesian optimization (BO) has been successfully applied to solving costly
black-box problems in machine learning and engineering. Here we explore BO
as a general tool for scientific model fitting. First, we present a novel hybrid BO
algorithm, Bayesian adaptive direct search (BADS), that combines BO with a direct
search framework. BADS achieves competitive performance at a small computa-
tional cost. We then perform an extensive benchmark of BADS vs. many common
and state-of-the-art derivative-free optimizers, on a set of real model-fitting prob-
lems from computational neuroscience. With default settings, BADS generally
outperforms other methods, including ‘vanilla’ BO, showing great promise for
advanced BO techniques, and BADS in particular, as a general model-fitting tool
in computational neuroscience and related fields.

1 Introduction

Many complex, nonlinear computational models in fields such as behaviorial, cognitive, and compu-
tational neuroscience cannot be evaluated analytically, but require moderately expensive numerical
approximations or simulations [1].1 In these cases, finding the maximum-likelihood (ML) solution –
for parameter estimation, or model selection – requires the costly exploration of a rough or noisy
nonconvex landscape, in which gradients are often unavailable to guide the search. Formally, we
consider the problem of finding the (global) optimum x∗ = argminx∈XE [f(x)] of a possibly noisy
objective f over a (bounded) domain X ⊆ RD, where the black-box function f can be intended as
the (negative) log likelihood of a parameter vector x for a given dataset and model.

Bayesian optimization (BO) is a state-of-the-art machine learning framework for optimizing expensive
and possibly noisy black-box functions [2, 3, 4]. This makes it an ideal candidate for solving difficult
model-fitting problems. Yet there are several obstacles to a widespread usage of BO as a general
tool for scientific model fitting. First, standard BO methods target very costly problems, such as
hyperparameter tuning [5], whereas, for instance, typical behavioral models might only have a
moderate computational cost (e.g., 0.1-10 s per evaluation). This implies major differences in what is
considered an acceptable algorithmic overhead, and in the maximum number of allowed function
evaluations (e.g., hundreds vs. thousands). Second, it is unclear how BO methods would fare in this
regime – in terms of efficiency, usability, and robustness – against commonly used and state-of-the-art,
non-Bayesian optimizers. Finally, BO might be perceived by non-practitioners as an advanced tool
that requires specific technical knowledge to be implemented or tuned.

We addressed these issues by developing a novel hybrid BO algorithm, Bayesian Adaptive Direct
Search (BADS), that achieves competitive performance at a small computational cost. We tested

1This paper is a shorter version of [1], modified for the NIPS workshop on Bayesian optimization (BayesOpt).

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

BADS, together with a wide array of commonly used optimizers, on a novel benchmark set of
model-fitting problems with real data and models drawn from studies in cognitive, behaviorial and
computational neuroscience. Finally, we made BADS available as a free MATLAB package that can
be used out-of-the-box with no tuning.2 BADS proves to be highly competitive on both artificial
functions and real-world model-fitting problems, showing promise as a general tool for model fitting
in computational neuroscience and potentially other scientific fields.

Related work There is a large literature about (Bayesian) optimization of expensive, possibly
stochastic, computer simulations, mostly used in machine learning [3, 4, 5] or engineering (known
as kriging-based optimization) [6, 7, 8]. Recent work has combined MADS with treed Gaussian
process (GP) models for constrained optimization (TGP-MADS [8]). Crucially, these methods have
large overheads and may require problem-specific tuning, making them impractical as a generic tool
for model fitting. Cheaper but less precise surrogate models than GPs have been proposed, such as
random forests [9], Parzen estimators [10], and dynamic trees [11]. In this paper, we focus on BO
based on traditional GP surrogates, leaving the analysis of alternative models for future work.

2 Bayesian adaptive direct search (BADS)

BADS is a hybrid BO method in that it combines the mesh adaptive direct search (MADS) framework
[12] with BO based on a local GP surrogate, implemented via a number of heuristics for efficiency.
BADS alternates between a series of fast, local BO steps (the SEARCH stage of MADS) and a
systematic, slower exploration of the mesh grid (POLL stage). See Algorithm 1, and [1] for details.

Mesh adaptive direct search (MADS) The MADS algorithm is a directional direct search frame-
work for nonlinear optimization [12, 13]. Briefly, MADS seeks to improve the current solution by
testing points in the neighborhood of the current point (the incumbent), by moving one step in each
direction on an iteration-dependent mesh (POLL stage). The typical step size at iteration k is given
by ∆poll

k , whereas ∆mesh
k represents the mesh resolution. In addition, the MADS framework can

incorporate in the optimization any arbitrary exploration strategy which proposes additional test
points that lie on the mesh (SEARCH stage). In BADS, we exploit the freedom of SEARCH to perform
Bayesian optimization in the neighborhood of the incumbent. See [12, 1] for details.

Bayesian optimization The standard form of BO [2] builds a GP [14] approximation of the
objective f , which is used as a relatively inexpensive surrogate to guide the search towards regions
that are promising (low GP mean) and/or unknown (high GP uncertainty), according to an acquisition
function that formalizes the exploitation-exploration trade-off. See [3, 4] for a tutorial on BO.

2.1 Algorithm overview
Initialization The algorithm is initialized by providing a starting point x0, hard lower/upper bounds
LB, UB, and optional plausible lower/upper bounds PLB, PUB. Plausible bounds identify a smaller
region in parameter space where most solutions are expected to lie. During optimization, variables are
linearly rescaled to the standardized box [−1, 1]D such that the box bounds correspond to [PLB, PUB]
in the original space. BADS supports bound or no constraints, and optionally other known constraints
via a provided barrier function c(x) that returns constraint violations. The initial design consists of
x0 plus ninit = D points chosen via a space-filling Sobol sequence [15] in the standardized box.

GP model in BADS The GP model is specified by a constant mean function m ∈ R, a smooth
automatic relevance determination (ARD) rational quadratic (RQ) kernel, and we use the GP lower
confidence bound (aLCB) [16] as acquisition function. The GP training set consists of a subset of
the points evaluated so far, selected to build a local approximation of the objective, and contains up
to 50 + 10D points in the neighborhood of the incumbent xk. Newly evaluated points are added
incrementally to the set, using fast rank-one updates of the GP posterior. The training set is rebuilt
any time the incumbent is moved. We impose an empirical Bayes prior on the GP hyperparameters
based on the current GP training set, and select θ via maximum a posteriori (MAP) estimation. We
refit the hyperparameters every 2D to 5D function evaluations; more often earlier in the optimization,
and whenever the current GP is particularly inaccurate at predicting new points.

2Code available at https://github.com/lacerbi/bads.

2

https://github.com/lacerbi/bads

Algorithm 1 Bayesian Adaptive Direct Search
Input: objective function f , starting point x0, hard bounds LB, UB, (optional: plausible bounds PLB,

PUB, barrier function c, additional options)
1: Initialization: ∆mesh

0 ← 2−10, ∆poll
0 ← 1, k ← 0, evaluate f on initial design

2: repeat
3: (update GP approximation at any step; refit hyperparameters if necessary)
4: for 1 . . . nsearch do . SEARCH stage
5: xsearch ← SEARCHORACLE . local Bayesian optimization step
6: Evaluate f on xsearch, if improvement is sufficient then break
7: if SEARCH is NOT successful then . optional POLL stage
8: evaluate opportunistically f on the POLL set sorted by acquisition function
9: if iteration k is successful then

10: update incumbent xk+1

11: if POLL was successful then ∆mesh
k ← 2∆mesh

k , ∆poll
k ← 2∆poll

k
12: else
13: ∆mesh

k ← 1
2∆mesh

k , ∆poll
k ← 1

2∆poll
k

14: k ← k + 1
15: until fevals > MaxFunEvals or ∆poll

k < 10−6 or stalling . stopping criteria
16: return xend = arg mink f(xk) (or xend = arg mink qβ(xk) for noisy objectives, see [1])

Implementation of the MADS framework We adopt an aggressive, repeated SEARCH strategy
that consists of up to nsearch = max{D, b3 + D/2c} unsuccessful SEARCH steps. In each step, we
use a search oracle, based on a local BO with the current GP, to produce a search point xsearch. We
choose xsearch via a fast, approximate evolutionary optimization inspired by CMA-ES [17] (see [1] for
details). We evaluate f(xsearch) and add it to the training set. If the improvement in objective value is
none or insufficient, that is less than (∆poll

k)3/2, we continue searching, or switch to POLL after nsearch
steps. Otherwise, we call it a success and start a new SEARCH from scratch, centered on the updated
incumbent. We incorporate the GP approximation in the POLL in two ways: when constructing the
set of polling directions, by rescaling them proportionally to the GP length scales, and when choosing
the polling order, by polling vectors according to the ranking given by the acquisition function [8]. In
case of a noisy objective, we adjust several algorithm parameters for increased robustness (see [1]).

3 Experiments

We tested BADS and 16 other optimizers for MATLAB (R2015b, R2017a) on a large set of artificial
and real optimization problems (see [1] for details). In particular, to verify the advantage of BADS’
hybrid approach to BO, we also tested a standard, ‘vanilla’ version of BO (bayesopt, R2017a;
similar to [5] but without hyperparameter marginalization). All algorithms used default settings.

Problem sets First, we considered a standard benchmark set of artificial, noiseless functions
(BBOB09 [18], 24 functions) in dimensions D ∈ {3, 6, 10, 15}, for a total of 96 test functions. We
also created ‘noisy’ versions of the same set. On this benchmark, BADS performed better or on par
with state-of-the-art methods (data not shown; see [1]). Second, we collected model-fitting problems
from six studies in cognitive and computational neuroscience (CCN17; see [1]). The objectives here
are negative log likelihood functions of an input parameter vector, for specified datasets and models.
For each study, we asked its authors for six real datasets (i.e., subjects or neurons), divided between
one or two main models of interest; collecting a total of 36 test functions with D ∈ {6, 9, 10, 12, 13}.
Procedure We ran 50 independent runs of each algorithm on each test function, with randomized
starting points and a budget of 500D function evaluations (200D for noisy problems). If an algorithm
terminated before depleting the budget, it was restarted from a new random point. We consider a run
successful if the current best (or returned, for noisy problems) function value is within a given error
tolerance ε > 0 from the true optimum fmin (or our best estimate thereof). For noiseless problems,
we compute the fraction of successful runs as a function of number of objective evaluations, averaged
over datasets/functions and over ε ∈ [0.01, 10] (log spaced). This is a realistic range of ε, for model
fitting purposes. For noisy problems, what matters most is the solution xend that the algorithm
actually returns at the end of the optimization. Thus, we plot the fraction of successful runs at 200D
function evaluations as a function of ε, for ε ∈ [0.1, 10], and averaged over datasets/functions.

3

Results (CCN17) The objectives are deterministic (e.g., computed via numerical approximation)
for three studies (Fig 1), and noisy (e.g., evaluated via simulation) for the other three (Fig 2).

10 50 100 500

Function evaluations / D

0

0.25

0.5

0.75

1
F

ra
ct

io
n

 s
ol

ve
d

CCN17 causal inference

[overhead-corrected, 24%]
bads
bads
cmaes (active)
cmaes
fminsearch
patternsearch
particleswarm
global
simulannealbnd
fmincon
fmincon (sqp)
mcs
ga
fmincon (actset)
randsearch
bayesopt

10 50 100 500

Function evaluations / D

0

0.25

0.5

0.75

1

F
ra

ct
io

n
 s

ol
ve

d

CCN17 Bayesian confidence

bads
bads
fmincon
fmincon (sqp)
fmincon (actset)
cmaes (active)
cmaes
mcs
patternsearch
fminsearch
particleswarm
global
randsearch
simulannealbnd
ga
bayesopt

10 50 100 500

Function evaluations / D

0

0.25

0.5

0.75

1

F
ra

ct
io

n
 s

ol
ve

d

CCN17 neuronal selectivity

bads
bads
fmincon
fmincon (sqp)
fmincon (actset)
cmaes (active)
cmaes
mcs
fminsearch
patternsearch
simulannealbnd
ga
global
particleswarm
randsearch
bayesopt

[overhead-corrected, 68%] [overhead-corrected, 14%]

Figure 1: Real model-fitting problems (CCN17, deterministic). Fraction of successful runs (ε ∈
[0.01, 10]) vs. # function evaluations per # dimensions. Left: Causal inference in visuo-vestibular
perception [19] (6 subjects, D = 10). Middle: Bayesian confidence in perceptual categorization [20]
(6 subjects, D = 13). Right: Neural model of orientation selectivity [21] (6 neurons, D = 12).

In all problems, BADS consistently performs on par with or outperforms all other tested optimizers,
even when accounting for its extra algorithmic cost of ∼ 0.03-0.15 s per function evaluation,
depending on D (see entry for overhead-corrected BADS in Fig 1). Interestingly, vanilla BO
(bayesopt) performs poorly on all problems, even without accounting for the much larger overhead
of bayesopt (on average ∼ 8 s per function evaluation, with up to 300 training inputs). More
complex forms of BO (e.g., input warping [25], hyperparameter marginalization [5]) might fare
better, but would substantially increase the already large overhead. Importantly, we expect this poor
perfomance to extend to any package which implements vanilla BO (such as BayesOpt [26]).

In conclusion, we have developed a novel BO method and an associated toolbox, BADS, with the
goal of fitting mildly expensive computational models, such as those found in many scientific fields,
out-of-the-box. On real model-fitting problems, BADS outperforms widely used and state-of-the-art
methods for nonconvex, derivative-free optimization, including ‘vanilla’ BO. We attribute the robust
performance of BADS to the alternation between the aggressive, efficient SEARCH strategy, based on
local BO, and the failsafe, almost model-free, POLL stage, which protects against failures of the GP
surrogate – whereas vanilla BO is vulnerable to model misspecification. The performance of BADS
is linked to its ability to obtain a fast approximation of the objective, which generally deteriorates in
high dimensions, or for functions with pathological structure. Major directions of future work include
extending BADS to problems with higher dimensionality; testing alternative statistical surrogates
instead of GPs; and recasting some of its heuristics in terms of approximate inference.

0.10.31310

Error tolerance ε

0

0.25

0.5

0.75

1

F
ra

ct
io

n
 s

ol
ve

d
at

 2
00

×
D

 fu
nc

. e
va

ls
.

CCN17 word recognition memory

bads
cmaes (noisy,active)
cmaes (noisy)
fminsearch
patternsearch
particleswarm
fmincon (actset)
ga
mcs
simulannealbnd
randsearch
snobfit
global
bayesopt

0.10.31310

Error tolerance ε

0

0.25

0.5

0.75

1

F
ra

ct
io

n
 s

ol
ve

d
at

 2
00

×
D

 fu
nc

. e
va

ls
.

CCN17 target detection/localization
bads
cmaes ()
cmaes (noisy)
snobfit
bayesopt
particleswarm
mcs
patternsearch
fminsearch
simulannealbnd
ga
global
fmincon (actset)
randsearch

noisy,
active

0.10.31310

Error tolerance ε

0

0.25

0.5

0.75

1

F
ra

ct
io

n
 s

ol
ve

d
at

 2
00

×
D

 fu
nc

. e
va

ls
.

CCN17 combinatorial game playing

bads
cmaes (noisy,active)
particleswarm
bayesopt
snobfit
mcs
patternsearch
fminsearch

Figure 2: Real model-fitting problems (CCN17, noisy). Fraction of successful runs at 200 × D
objective evaluations vs. tolerance ε. Left: Confidence in word recognition memory [22] (6 subjects,
D = 6, 9). Middle: Target detection and localization [23] (6 subjects, D = 6). Right: Combinatorial
board game playing [24] (6 subjects, D = 10).

4

References
[1] Acerbi, L. & Ma, W. J. (2017) Practical Bayesian optimization for model fitting with Bayesian adaptive

direct search. Advances in Neural Information Processing Systems 30, 1834–1844.

[2] Jones, D. R., Schonlau, M., & Welch, W. J. (1998) Efficient global optimization of expensive black-box
functions. Journal of Global Optimization 13, 455–492.

[3] Brochu, E., Cora, V. M., & De Freitas, N. (2010) A tutorial on Bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint
arXiv:1012.2599.

[4] Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & de Freitas, N. (2016) Taking the human out of the
loop: A review of Bayesian optimization. Proceedings of the IEEE 104, 148–175.

[5] Snoek, J., Larochelle, H., & Adams, R. P. (2012) Practical Bayesian optimization of machine learning
algorithms. Advances in Neural Information Processing Systems 25, 2951–2959.

[6] Taddy, M. A., Lee, H. K., Gray, G. A., & Griffin, J. D. (2009) Bayesian guided pattern search for robust
local optimization. Technometrics 51, 389–401.

[7] Picheny, V. & Ginsbourger, D. (2014) Noisy kriging-based optimization methods: A unified implementation
within the DiceOptim package. Computational Statistics & Data Analysis 71, 1035–1053.

[8] Gramacy, R. B. & Le Digabel, S. (2015) The mesh adaptive direct search algorithm with treed Gaussian
process surrogates. Pacific Journal of Optimization 11, 419–447.

[9] Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011) Sequential model-based optimization for general
algorithm configuration. LION 5, 507–523.

[10] Bergstra, J. S., Bardenet, R., Bengio, Y., & Kégl, B. (2011) Algorithms for hyper-parameter optimization.
pp. 2546–2554.

[11] Talgorn, B., Le Digabel, S., & Kokkolaras, M. (2015) Statistical surrogate formulations for simulation-
based design optimization. Journal of Mechanical Design 137, 021405–1–021405–18.

[12] Audet, C. & Dennis Jr, J. E. (2006) Mesh adaptive direct search algorithms for constrained optimization.
SIAM Journal on optimization 17, 188–217.

[13] Audet, C., Custódio, A., & Dennis Jr, J. E. (2008) Erratum: Mesh adaptive direct search algorithms for
constrained optimization. SIAM Journal on Optimization 18, 1501–1503.

[14] Rasmussen, C. & Williams, C. K. I. (2006) Gaussian Processes for Machine Learning. (MIT Press).

[15] Bratley, P. & Fox, B. L. (1988) Algorithm 659: Implementing Sobol’s quasirandom sequence generator.
ACM Transactions on Mathematical Software (TOMS) 14, 88–100.

[16] Srinivas, N., Krause, A., Seeger, M., & Kakade, S. M. (2010) Gaussian process optimization in the bandit
setting: No regret and experimental design. ICML-10 pp. 1015–1022.

[17] Hansen, N., Müller, S. D., & Koumoutsakos, P. (2003) Reducing the time complexity of the derandomized
evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary Computation 11, 1–18.

[18] Hansen, N., Finck, S., Ros, R., & Auger, A. (2009) Real-parameter black-box optimization benchmarking
2009: Noiseless functions definitions.

[19] Acerbi, L., Dokka, K., Angelaki, D. E., & Ma, W. J. (2017) Bayesian comparison of explicit and implicit
causal inference strategies in multisensory heading perception. bioRxiv preprint bioRxiv:150052.

[20] Adler, W. T. & Ma, W. J. (2017) Human confidence reports account for sensory uncertainty but in a
non-Bayesian way. bioRxiv preprint bioRxiv:093203.

[21] Goris, R. L., Simoncelli, E. P., & Movshon, J. A. (2015) Origin and function of tuning diversity in macaque
visual cortex. Neuron 88, 819–831.

[22] van den Berg, R., Yoo, A. H., & Ma, W. J. (2017) Fechner’s law in metacognition: A quantitative model of
visual working memory confidence. Psychological Review 124, 197–214.

[23] Mazyar, H., van den Berg, R., & Ma, W. J. (2012) Does precision decrease with set size? J Vis 12, 1–10.

[24] van Opheusden, B., Bnaya, Z., Galbiati, G., & Ma, W. J. (2016) Do people think like computers?
International Conference on Computers and Games pp. 212–224.

[25] Snoek, J., Swersky, K., Zemel, R., & Adams, R. (2014) Input warping for Bayesian optimization of
non-stationary functions. pp. 1674–1682.

[26] Martinez-Cantin, R. (2014) BayesOpt: A Bayesian optimization library for nonlinear optimization,
experimental design and bandits. Journal of Machine Learning Research 15, 3735–3739.

5

	Introduction
	Bayesian adaptive direct search (BADS)
	Algorithm overview

	Experiments

