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Abstract

Bayesian optimization (BO) has been demonstrated to be an efficient tool to
globally optimize an expensive black-box function. Currently, however only a few
works have explored the use of domain knowledge in BO to gain further efficiency.
In this paper we discuss a particular form of prior information - the monotonicity
of the underlying function with respect to one or more certain variables. Given the
monotonicity information, we first detect the monotonic direction such as increasing
or decreasing at each iteration. We then incorporate the detected monotonic
direction into our proposed BO algorithm. We show the utility of our algorithm
in target value optimization problems. Through the simulation we demonstrate
the correctness of the proposed algorithm in discovering the monotonic direction.
We also demonstrate the superiority of our algorithm in a real-world experimental
optimization for short polymer fiber with the target geometric properties.

1 Introduction

Bayesian optimization (BO) has attracted significant research interests recently due to its efficiency
in global optimization for black-box functions [10, 1, 7, 4]. However, only a few work has explored
the use of prior knowledge about the underlying function in BO to further improve its efficiency.
There are different types of prior knowledge about a function such as monotonicity [9], U-shape
and S-shape [2] and quasiconvexity [3]. These priors have been used to improve function modeling.
We discuss one particular form of prior knowledge - the monotonicity of a function with respect to
one or more certain variables. In real applications experts sometimes have the prior knowledge that
experiment result is monotonic with respect to one or more experimental parameters. For example, in
short polymer fiber production the experts believe in advance that the fiber length is monotonically
decreasing with the butanol speed [5]. To achieve a fiber with the target length, the experimenter
often manually adjusts the experiment parameters based on the monotonicity information. Motivated
by this, we propose to incorporate the monotonicity into BO to accelerate experimental design for the
targeted product.

We formulate the target value optimization as the problem of minimizing the difference between the
target value and the underlying function. Mathematically the objective is

x∗ = argminx∈X g(x) , argminx∈X |f(x)− fT |

where f(x) is the underlying function and fT is the target value. We can employ the standard BO
approach to minimize g(x). It first uses Gaussian process (GP) to model g(x) and then constructs
the acquisition function which is cheap to maximize to query the next point of f(x) and proceeds
this repeatedly. However, it is not clear how the monotonicity about f(x) can be encoded into BO
to facilitate the minimization of g(x). Furthermore, if the monotonic direction of f(x) is unknown,
how can we detect and decide its monotonic direction such as increasing or decreasing before using
the information?
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To answer the first question, we propose a novel algorithm to incorporate the monotonicity into the
BO. Suppose that we have the prior knowledge that f(x) is monotonically increasing or decreasing
with respect to the specified variables. We use GP to model f(x) to make sure the mean function to
be monotonic in these dimensions. It is achieved by following the work in [9] along with the positive
or negative partial derivative signs in the whole search space. We then sample virtual observations
from the GP of f(x), which in turn will be combined with the actual observations to construct GP
for g(x). BO can finally be applied to the optimization of g(x). In this way, we can transfer the
monotonicity of f(x) to g(x) in its usable form.

To answer the second question, we use Bayesian model selection. We compute the leave-out-one (loo)
predictive likelihood [11] for two monotonicity hypotheses on f(x): monotonically decreasing and
monotonically increasing. The one with the highest loo predictive likelihood is then selected to decide
the monotonic direction of f(x). In practice, at each iteration we decide the monotonic direction of
the underlying function f(x). We then utilize the positive or negative derivative signs corresponding
to monotonically increasing and monotonically decreasing into our proposed algorithm. In short, our
main contributions are:

• an algorithm to detect the monotonic detection of the underlying function for BO;

• the proposal of a novel BO algorithm to incorporate the monotonicity of the underlying
function to optimize towards a target value;

• the validation of our proposed algorithm through both simulation and the experimental
design of short polymer fiber with the target length.

2 The Proposed Algorithm

We know that the first order derivative signs of a monotonic function are always positive or negative.
Riihimäki and Vehtari [9] developed an elegant framework to incorporate derivative signs into
Gaussian process. Following this work, we derive the posterior GP with derivative signs. Then we
propose a novel algorithm to encode the monotonicity of f(x) in Bayesian optimization. Finally we
detect the monotonic direction of f(x) in the specified variables including monotonically increasing
and monotonically decreasing based on the current observations.

2.1 Gaussian process with derivative signs

Since the GP is a linear operator, the derivative of Gaussian process is still a Gaussian process [8].
Therefore, it is flexible to incorporate derivative values into GP for prediction. Let {xi, yi}ti=1 be
observations and the ith sample yi = f(xi) + εi with εi ∼ N (0, σ2

noise), as the noisy observation
of f(x) at xi. We denote X = {xi}ti=1 and y = {yi}t1. Let Xs = {xs1 ,xs2 , · · · ,xsm} be the
locations of virtual derivative observations and s = {s1, s2, · · · , sm} be partial derivative signs for
the variables d. The latent function value and the partial derivative value for the variables d are
denoted as f and f

′
respectively.

Riihimäki and Vehtari [9] have employed a probit function to build the link derivative sign s and
derivative value f

′

p(s|f
′
) =

m∏
i=1

Φ

(
si∂f

(i)

∂x
(i)
d

1

v

)
(1)

where Φ(z) =
∫ z
−∞N (x | 0, 1)dx and the steepness v controls the slope of monotonicity. Riihimäki

and Vehtari [9] use expectation propagation to approximate Eq.(1). We refer the readers to go through
the detail inference for GP with derivative signs in [9].For a new point, the predictive mean and
variance has the same form in GP with derivative signs as the standard GP [8]. In our experiments,
we empirically place virtual derivative observations in a grid.

2.2 Bayesian optimization with monotonicity

We propose a new algorithm to encode the monotonicity of f(x) into the BO of g(x). In this
algorithm we first make the mean function of f(x) to be monotonic in Gaussian process and then we
sample points from this GP which in turn is combined with existing observations to build a new GP
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Algorithm 1 Bayesian optimization with monotonicity Information

Input: observations D1:t = {xi, yi}ti=1 on f(x), the target value fT , the specified variables d for
monotonic direction detection

1: obtain the observations G = {xi, |yi − fT |}ti=1 of g(x);
2: for t = 1, 2, · · · do
3: perform monotonic direction detection on f(x) (sec 2.3);
4: build Gaussian process with derivative signs (positive or negative) on f(x) (sec 2.1);
5: sample the virtual observations V from the monotonic GP above (sec 2.2);
6: build Gaussian process on g(x) using V and G (Eq.(2) and (3)) (sec 2.2);
7: sample the next point xt+1←argmaxxt+1∈X

a(x | G,V);
8: evaluate the function yt+1 = f(xt+1) + ε;
9: augment the data D1:t+1 = {D1:t, {xt+1, yt+1}};

10: end for

model on g(x). By this way we make full use of the monotonicity of f(x) and transfer this critical
knowledge to g(x) through the sampled points. To be specific, we model the function f(x) using
monotonic GP described in section 2.1. We then randomly sample J points Xv = {xvp}Jj=1 from
the monotonic GP. We denote the sampled set V = {xvp, µf (xvp), σ

2
f (xvp)}Jj=1 with the mean and

variance. Combing sampled points and existing observations {xi, |yi − fT |}ti=1, we can build a new
GP on g(x) and then perform Bayesian optimization. The mean and variance for a new point xt+1 in
this GP are

µg(xt+1) = kTK−1[µg(Xv);µg(X)] (2)

σ2
g(xt+1) = 1− kTK−1k (3)

where k = [k(xt+1,x
v
1) · · · k(xt+1,x

v
J) k(xt+1,x1) · · · k(xt+1,xt)], µg(Xv) = |µf (Xv)− fT |

and µg(X) = |y − fT |,

K =

[
KV V KV X

KXV KXX

]
+

[
σ2
f (Xv) 0
0 σ2

noise

]
I

where KV V are the self-covariance matrix of Xv and KXV is the covariance matrix between X and
Xv .

2.3 Monotonic direction detection

In experimental designs, experts sometimes have the prior monotonicity about the experiment result
with respect to one or more variables. However they might not be confident about the monotonic
direction such as increasing or decreasing. We analytically decide the monotonic direction based
on the current observations so that we can flexibly incorporate the correct derivative signs into our
algorithm in sec 2.2.

Suppose we are given a set of observed data D = {X,y}. Given monotonicity hypotheses such
as monotonically increasing and monotonically decreasing with respect to one ore more specified
variables, we can train Gaussian process models corresponding different hyperparameters θi. The first
object of interest for prediction assessment in Bayesian model is the leave-one-out (Loo) predictive
likelihood [6]. It represents the likelihood of the left-out point given a model trained on other points.
We compute it as

Loo =
1

t

t∑
i=1

p(yi | xi,D−i) (4)

p(yi | xi,D−i) =

∫
p(yi | xi, θ)p(θ | D−i)dθ (5)

where D−i is all other observations except (xi, yi). In Gaussian process, Eq.(5) is a Gaussian
distribution and thus Eq.(4) is tractable. At each iteration, we compare the leave-out-one predictive
likelihood of two hypotheses: monotonically increasing and monotonically decreasing and choose
one with the highest likelihood value. We then adopt the algorithm in sec 2.2 to incorporate positive
or negative derivative signs of f(x) to perform BO. The algorithm we propose is presented in Alg 1.
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(a) 2D function f1.
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(b) 5D function f2.

Figure 1: The simulation results for benchmark functions. Left in (a) and (b): The comparison of the
log leave-out-one (loo) predictive likelihood between monotone increasing and monotone decreasing.
Right in (a) and (b): The comparison of the standard BO and the proposed algorithm. The vertical
axis represents the difference to the target value.
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Figure 2: The real experiment for optimizing the SPF with the target length 70µm. Left: The
comparison of the log leave-out-one (loo) predictive likelihood between monotone increasing and
monotone decreasing. Right: The comparison of the standard BO and the proposed algorithm. The
vertical axis represents the difference to the target value.

3 Experiments

We compare the proposed algorithm to the standard BO on the applications of benchmark function
optimization as well as optimization of short polymer fibers with targeted length. Since the parameter
ν in Eq.(1) reflects the slope of the monotonic function, we empirically set ν = 0.01 in all experiments.
For hyperparameters in all GP, we automatically estimated them at each iteration by maximizing
the marginal likelihood. We run all experiments for 50 times and report the average mean and the
standard error. We optimize benchmark functions which is monotonically decreasing with respect to
some variables. The benchmark functions we use are:

(a) 2D function: f1(x) = 1
20 (x1 − 5)2 + 1

20 (x2 − 5)2, fT = 1.5, x ∈ [0, 5] ;

(b) 5D function: f2(x) = 1
30 (x1 − 4)2 + 1

30 (x2 − 4)2 + GN (x3:5|0,1), fT = 1.5, x ∈ [−2, 4] ,
where GN (x3:5|0, 1) is a un-normalized Gaussian PDF for x3 ∼ x5;

The D + 1 initial points are randomly sampled from synthetic functions. For both the f1 and f2,
we test our algorithm by leveraging the information that the function is monotonic with respect to
x1. We first compute the log loo predictive likelihood of two hypotheses consisting of monotone
increasing and decreasing based on the current observations and then we run BO with the detected
monotonic direction. The experiment results are shown in Fig 1. For f1we detected that the function
is monotonically decreasing and subsequently the proposed algorithm can approach the target more
quickly than the standard BO. Similarly for f2, our algorithm outperform the standard BO significantly.

We also test our algorithm on the real-world application of optimizing the short polymer fiber (SPF)
with the target length. To simplify the problem, we optimize five parameters including channel width,
butanol speed, constriction angle, polymer concentration and device position to produce the desirable
fiber [5]. Material experts have provided us the information that the fiber length is monotonic wrt the
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butanol speed. Thus the goal of our task is to decide the correct monotonic direction and leverage the
decision to facilitate the optimization of the fiber with the target length. We set the target length of
the fiber as 70µm in experiments and used 5 random experiments intiially. The log loo predictive
likelihood demonstrated in Fig 2 shows that we detected that the fiber length is monotonically
decreasing with the butanol speed and the proposed algorithm can approach the target faster and thus
reducing the number of real experiments.

4 Conclusion

We have proposed a completed algorithm for monotonic direction detection and the incorporation of
the monotonicity information about the underlying function into the BO framework. The experiment
results have shown that the proposed algorithm significantly outperforms the standard BO perfor-
mance. Regarding the work in this paper we will seek for a smart way to automatically detect the
trend of the function without any assumption so that different BO strategies can switch freely between
each other. More broadly we have envisaged the benefit of the use of monotonicity information in
BO and therefore exploring the use of other types of prior knowledge in BO is a promising direction.
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