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Abstract

Information-theoretic Bayesian optimisation techniques have demonstrated state-of-
the-art performance in tackling important global optimisation problems. However,
current information-theoretic approaches: require many approximations in im-
plementation; limit the choice of kernels available to model the objective; and
introduce often-prohibitive computational overhead. We develop a fast information-
theoretic Bayesian optimisation method, FITBO, that circumvents the need for
sampling the global minimiser, thus significantly reducing computational overhead.
Moreover, in comparison with existing approaches, our method faces fewer con-
straints on kernel choice and enjoys the merits of dealing with the output space.
We demonstrate empirically that FITBO inherits the performance associated with
information-theoretic Bayesian optimisation, while being even faster than simpler
Bayesian optimisation approaches, such as Expected Improvement.

1 Introduction

Bayesian optimisation is a powerful tool to tackle optimisation challenges [1] whose objective
functions are unknown, nonconvex and expensive to evaluate [10]. A core step in Bayesian
optimisation is to definite an acquisition function which uses the available observations effectively
to recommend the next query location [10]. There are many types of acquisition functions such as
Probability of Improvement (PI) [8], Expected Improvement (EI) [7] and Gaussian Process Upper
Confidence Bound (UCB) [11]. The most recent type is based on information theory and offers a
new perspective to efficiently select the sequence of sampling locations based on entropy of the
distribution over the unknown minimiser x∗ [10]. Such methods have demonstrated impressive
empirical performance and tend to outperform traditional methods in tasks with highly multimodal
and noisy latent functions [4].

One popular information-based acquisition function is Predictive Entropy Search (PES)
[12, 3, 4]. However, PES is very slow to evaluate and faces serious constraints on kernel choices.
Moreover, PES deals with the input space, thus less efficient in higher dimensional problems [13].
The more recent methods such as Output-space Predictive Entropy Search (OPES) [5] and Max-value
Entropy Search (MES) [13] improve on PES by focusing on the information content in output
space. However, all current entropy search methods, being it dealing with minimiser or minimum
value, need two separate sampling processes: 1) sampling hyperparameters for marginalisation
and 2) sampling the global minimum for entropy computation. The second sampling process not
only contributes significantly to the computational burden of these information-based acquisition
functions but also requires the construction of a good approximation for the latent function [4], which
introduces some kernel constraints.

In view of the limitations of the existing methods, we propose a fast information-theoretic
Bayesian optimisation technique, FITBO. Inspired by the Bayesian quadrature work in [2], the
creative contribution of our technique is to approximate any black-box function in a parabolic form:
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f(x) = η + 1/2g(x)2. The global minimum is then explicitly represented by a hyperparameter
η, which can be sampled together with other hyperparameters. As a result, our approach has the
following three major advantages. First, our approach circumvents the need to sample the global
minimiser/minimum, thus saving much sampling effort and speeding up the evaluation of acquisition
function tremendously. Second, our approach faces fewer constraints on the choice of appropriate
kernel functions for the Gaussian process prior. Third, similar to MES [13], our approach works on
information in the output space, thus more efficient in high dimensional problems.

2 Fast Information-theoretic Bayesian Optimisation

Information theoretic techniques aim to reduce the uncertainty about the unknown global minimiser
x∗ by selecting a query point that leads to the largest reduction in entropy of the distribution p(x∗|Dn)
[3]. The acquisition function for such techniques has the form [3] [4]:

αES(x|Dn) = H[p(x∗|Dn)]− Ep(y|Dn,x)

[
H
[
p
(
x∗|Dn ∪ {(x, y)}

)]]
. (1)

PES makes use of the symmetry of mutual information and turns the function (1) to the form:

αPES(x|Dn) = H[p(y|Dn,x)]− Ep(x∗|Dn)

[
H
[
p(y|Dn,x,x∗)

]]
, (2)

where p(y|Dn,x,x∗) is the predictive posterior distribution for y conditioned on the observed data
Dn and the global minimiser x∗.

FITBO harnesses the same information-theoretic thinking but measures the entropy about
the latent global minimum f∗ = f(x∗) instead of that of the global minimiser x∗. Thus, the
acquisition function of FITBO method is the mutual information between the function minimum
f∗ and the next query point [13]. In other words, FITBO aims to select the next query point which
minimises the entropy of the global minimum:

αFITBO(x|Dn) = H[p(y|Dn,x)]− Ep(f∗|Dn)

[
H
[
p(y|Dn,x, f∗)

]]
. (3)

This idea of changing entropy computation from the input space to the output space is also shared by
[5] and [13]. Hence, the acquisition function of the FITBO method is very similar to those of OPES
[5] and MES [13]. However, our novel contribution is to express the unknown objective function in
a parabolic form: f(x) = η + 1/2g(x)2, thus representing the global minimum f∗ explicitly by a
hyperparameter η. FITBO acquisition function can then be reformulated as:

αFITBO(x|Dn) = H[p(y|Dn,x)]− Ep(η|Dn)

[
H
[
p(y|Dn,x, η)

]]
= H

[ ∫
p(y|Dn,x, η)p(η|Dn)dη

]
−
∫
p(η|Dn)H

[
p(y|Dn,x, η)

]
dη. (4)

The intractable integral terms can be approximated via Monte Carlo method [4]. The predictive
posterior distribution p(y|Dn,x, η) can be turned into a neat Gaussian form by applying a local
linearisation technique on our parabolic approximation as described in Section 2.1. Then, the first
term in the above FITBO acquisition function becomes an entropy of a Gaussian mixture which can be
approximated as described in Section 2.2. The second term can be computed analytically because the
entropy of a Gaussian has the closed form: H[p(y|Dn,x, η)] = 0.5 log

[
2πe
(
vf (x|Dn, η) + σ2

n

)]
where the variance vf (x|Dn, η) = Kf (x,x

′) and σ2
n is the variance of observation noise.

2.1 Parabolic Approximation and Predictive Posterior Distribution

The warped sequential active Bayesian integration method [2] uses a square-root transformation on
the integrand to ensure non-negativity. Inspired by this work, we creatively express any unknown
objective function f(x) in the parabolic form:

f(x) = η + 1/2g(x)2, (5)

where η is the global minimum of the objective function. Given the noise-free obser-
vation data Df = {(xi, fi)|i = 1, . . . n} = {Xn, fn}, the observation data on g is
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Dg = {(xi, gi)|i = 1, . . . n} = {Xn,gn} where gi =
√
2(fi − η) .

We impose a zero-mean Gaussian process prior on g(x) so that the posterior distribution
for g conditioned on the observation data Dg and the test point x also follows a Gaussian
process: p(g|Dg,x, η) = GP

(
g;mg(·),Kg(·, ·)

)
where mg(x) = K(x,Xn)K(Xn,Xn)

−1gn,
Kg(x,x

′) = K(x,x′)−K(x,Xn)K(Xn,Xn)
−1K(Xn,x

′).

Due to the parabolic transformation, the distribution for any f is now a non-central χ2 dis-
tribution, making the analysis intractable. In order to tackle this problem and obtain a posterior
distribution p(f |Df ,x, η) that is also Gaussian, we resort to the linearisation technique proposed in
[2]. We perform a local linearisation of the parabolic transformation h(g) = η + 1/2g2 around g0 and
obtain f ≈ h(g0) + h′(g0)(g − g0) where the gradient h′(g) = g. By setting g0 to the mode of the
posterior distribution p(g|Dg,x, η) (i.e. g0 = mg), we obtain an expression for f that is linear in g:

f(x) ≈ [η + 1/2mg(x)
2] +mg(x)[g(x)−mg(x)] = η − 1/2mg(x)

2 +mg(x)g(x). (6)

Since the affine transformation of a Gaussian process remains Gaussian, the predictive posterior
distribution for f now has a closed form:

p(f |Df ,x, η) = GP
(
f ;mf (·),Kf (·, ·)

)
(7)

where mf (x) = η + 1/2mg(x)
2, Kf (x,x

′) = mg(x)Kg(x,x
′)mg(x

′).

However, in real world situation, we do not have access to the true function values but
only noisy observations of the function, y(x) = f(x) + ε, where ε is assumed to be an independently
and identically distributed Gaussian noise with variance σ2

n [9]. Given noisy observation data
Dn = {(xi, yi)|i = 1, . . . n} = {Xn,yn}, the predictive posterior distribution (7) becomes:

p(y|Dn,x, η) = GP
(
y;mf (·),Kf (·, ·) + σ2

nδ(·, ·)
)
. (8)

2.2 Approximation for the Entropy of A Gaussian Mixture

The entropy of our univariate Gaussian mixture is intractable and can be estimated via a number of
methods: the Taylor expansion proposed in [6], numerical integration and Monte Carlo integration.
Of these three, our experimentation revealed that numerical integration (in particular, an adaptive
Simpson’s method) was clearly the most performant for our application (see Supplementary Material).

Alternatively, we can approximate using moment matching. The mean and variance of a
univariate Gaussian mixture model p(z) =

∑M
j

1
MN (z|mj ,Kj) have the analytical form:

E[z] =
∑M
j

1
Mmj , V ar(z) =

∑M
j

1
M (Kj + m2

j ) − E[z]2. By fitting a Gaussian to the
Gaussian mixture, the first entropy term can be approximated with an analytical expression:
H[p(z)] ≈ 0.5 log

[
2πe
(
V ar(z) + σ2

n

)]
. We will compare numerical integration (FITBO) and

moment-matching approaches (FITBO-MM) in our experiments in Section 3.

3 Experiments

We conduct two sets of experiments to test the empirical performance of FITBO and compare it with
other popular acquisition functions. The first set of experiments measure and compare the runtime
of evaluating different acquisition functions αn(x|Dn). The runtime measured excludes the time
taken for sampling hyperparameters and optimising the acquisition functions. For the experiments,
we take 10 initial observation data from a N-D test function to sample a set of M hyperparameters
ψ = {θi, ηi|i = 1, . . . ,M} from log p(ψ|Dn) and use the set of hyperparameters to evaluate all
acquisition functions. Finally, we compute the mean and standard deviation of the runtime taken for
evaluating various acquisition functions at one test point. Figure 1 shows that FITBO is significantly
faster to evaluate than PES and MES and the moment matching technique manages to further enhance
the speed of FITBO by a large margin, making FITBO-MM faster than EI and comparable with
PI and GP-UCB. We did not include the time for sampling η alone into the runtime of evaluating
FITBO and FITBO-MM because η is sampled jointly with other hyperparameters and does not cause
significant increase in the sampling burden. Note further that we will limit all methods to a fixed
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number of hyperparameter samples in both runtime tests and performance experiments: this will
impart a slight performance penalty to our method, which must sample from a hyperparameter space
of one additional dimension.

Figure 1: The runtime of evaluating PI, EI, UCB, PES, MES, FITBO and FITBO-MM. The left plot
shows the runtime for using different hyperparameter sample sizes (M = 10, 20, 50, 100, 200, 500).
The right plot shows the runtime for test point data of different dimensions (N=2,4,6).

The second set of experiments perform optimisation tasks on three benchmark functions. In all tests,
we set the observation noise to σ2

n = 10−3 and resample all the hyperparameters after each function
evaluation.The results in Figure 2 show that FITBO and FITBO-MM outperform the other two
information-theoretical approaches in the problems of Brain 2D and Hartman 6D while performing
comparably well as PES and MES in the case of Eggholder 2D.

(a) Branin 2D (b) Eggholder 2D (c) Hartman 6D

Figure 2: Optimisation results for benchmark test functions in terms of the median Euclidean distance
between the predicted global minimiser x̂n and the true global minimiser x∗: ‖L‖2 = ‖x̂n − x∗‖.

4 Conclusion

We have proposed a novel information-theoretic approach for Bayesian optimisation, FITBO. With
the creative use of the parabolic approximation and the hyperparameter η, FITBO enjoys the merits
of less sampling effort and much simpler implementation in comparison with other information-based
methods like PES and MES. As a result, its computational speed outperforms current information-
based methods by a large margin and even exceeds EI to be on par with PI and UCB. While requiring
much lower runtime, it still manages to achieve satisfactory optimisation performance which is as
good as or even better than PES and MES in a variety of tasks. Therefore, FITBO approach offers a
very competitive alternative to existing Bayesian optimisation approaches.
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