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Abstract

We tackle the problem of automatic model selection: given a large class of models
and a data set, we propose a new procedure to select the best model according to
some pre-defined, possibly very expensive, model selection criterion. Although
our approach is general, we focus on the class of models defined by the fami-
lies of kernel combinations in Gaussian Processes (GP). We tackle this problem
by making use of a new latent variable probabilistic model, a Kernel Grammar
Variational Autoencoder (KG-VAE) that we use to embed the model space into
some low dimensional continuous manifold. This provides a coherent Euclidean
representation of the kernel combinations and a direct way of navigating the kernel
space more efficiently in a Bayesian optimization (BO) fashion. The key aspect
of this approach is that kernel combinations can be generated off-line by using a
context-free grammar that can be used to produce the input data used to train the
KG-VAE. Some experiments illustrate the utility of this approach.

1 Introduction
The problem of automatic model selection is ubiquitous in science and engineering. In deep learning,
choosing the right architecture of the network is crucial to guarantee susses in practical applications
[1]. In kernel-based methods, the problem reduces to the selection of an appropriate kernel function
together with its hyper-parameters [2, 3]. Despite there has been considerable effort in these fields to
propose automatic model selection methods, the truth is that in most scenarios previous knowledge is
used as the main driver to select the type of model to use.

The Automatic Statistician (AS) is one of the most prominent attempts to automate the model selection
process. With a Gaussian process (GP) as the class of models of choice, the goal is to automatically
select the best kernel structure to explain a data set, which is chosen by enumerating a countably
infinite space of arbitrarily complex kernels composed via additions and multiplication of simple ones
[4]. Interestingly, the final goal of the AS is not just to fit a model to data, but to write a report that uses
the type of combination as the main element to interpret the data. This makes the problem specially
hard. Several kernel combinations may have similar prediction power, but when looking for the most
interpretable one a balance between the kernel complexity as its prediction power must be taken into
account. This implies thatO(n3) goodness of fit (GOF) measures like Bayesian Information Criterion
(BIC) or the model evidence need to be optimized to select the best model, which makes brute force
computationally intractable.

Several approaches have been proposed to select ‘interpretable’ kernels in the context of the AS. In
the original AS paper a ‘greedy’ search [3, 4] us used to find the best combination. [5] scales this
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Figure 1: Main elements of PROLAS: a VAE is used to learn the latent space Z based on data produced
by a context-free grammar. BO is applied over the latent space via a GP model to find the optimal
kernel combination in GP models.

approach to big data scenarios. In [2] a parametric measure, the Hellinger distance is used to define
a search over the kernels space using Bayesian optimization (BO). In this work we use a similar
idea, but instead of using a parametric distance for a few candidates, we learn a low dimensional
space where all possible combination are represented. Our algorithm, PROLAS, which stands for
Probabilistic Optimization with Latent Search, leverages the idea that kernel combinations can be
expressed as operations of a context-free grammar. We use a Variational Auto-encoder (VAE) [6, 7] to
learn a well-behaved low-dimensional manifold where the models are naturally represented without
making further hypothesis about their distance. Interestingly, this latent space can be learned off-line
using data produced by the grammar. BO is later used to connect the latent space with the GOF of
interest by means of a GP. See Figure 1 for a graphical illustration of the method proposed in this
work. Section 2 describes the proposed approach. In Section 3 we illustrate its performance with a
series of experimental results. In Section 4 we include some conclusions and further lines of research
derived from this work.

2 Variational Auto-encoders for optimal search in Kernel Spaces
2.1 Problem description
Our goal is to solve a supervised learning problem between the spaces X and Y given a dataset
of observations D = {xi, yi}Ni=1 where xi ∈ X and yi ∈ Y . Suppose that we have a class of
probabilistic models M that we consider adequate to represent the data. We callM each probabilistic
model of this set and we denote by ΘM its associated parameter space. The models in M will
represent different structural assumptions about the data as trends of periodicity and the values of
θ ∈ Θ, the model hyper-parameters, will differentiate models within the same family. In particular
we will consider M to be the family of GPS with different kernel combinations.

The problem to solve is to select one single model from M that explains our data D the best. In this
paper we will use the BIC for consistency with [4] although the evidence would be a more appropriate
measure in this scenario. The problem is therefore reduced to find

M∗θ := arg max
M∈M

E(M). (1)

where E : M → R is the chosen ‘goodness of fit measure’. Both the evidence and and the BIC
scale cubically with the number of observations N and gradient information is not available given
the discrete nature of M. Therefore standard optimization methods do not apply to solve (1). The
direction we take in this work is to find low dimensional Euclidean representation of M where
Bayesian optimization principles can be applied.

2.2 Grammar and Data-driven based Kernel Representation
Following [4, 3, 2], we know that it is possible to generate a countably infinite kernel space through
closure of kernels by means of a context free grammar. In particular, given a set of base kernels B
we can generate an expression S representing a kernel combination by subsequent operations O,
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Algorithm 1 Context-free grammar for kernel expressions generation.
Input: Nmax, pB, pO, S = ∅.
repeat

Update S by choosing one of the base kernel from B with prior probability pB.
Update S by choosing one operation from O from with prior probability pO.

until Operation is Stop or the number of applied operations is Nmax.

additions, multiplications, replacements or stop. Both the kernels and the operations are chosen
according to pre-specified probabilities pB and pO. See Algorithm 1 for details.

To represent the expression S in a way that it is useful for our purposes, we use 1-vectors for both
the kernels and the operations. Suppose that B = {K1,K2,K3,K4} is the set of four base kernels.
We also have the set of operations O = {+,×, Stop}. We transform the expression S into a binary
vector by recurrently attaching the 1-hot vector of each kernel and operation. When the operation is
Stop, we complete the vector with zeros. For instance, in the following example, four kernels are
combined before termination:

K2︸︷︷︸
1000

+︸︷︷︸
100

K1︸︷︷︸
0100

∗︸︷︷︸
010

K3︸︷︷︸
0010

∗︸︷︷︸
010

K1︸︷︷︸
1000

Stop︸︷︷︸
001

...︸︷︷︸
000

This representation, that we denote by rg, captures the complexity of the combination but it does
not take into account of the differences in the kernels due to the dataset D. To this end we combine
the previous grammar-driven representation of the kernels with a data-driven representation. In
particular, we use a measure of distance between the kernel matrices of the base kernels evaluated
in the data and the kernel matrices of the combinations for some values of the hyper-parameters θ
of the kernels. For each combination, this provides a vector of size |B| that takes into account the
properties of the data of the problem. A proper distance to use is the Hellinger distance but it is
computationally very demanding [2]. Although not optimal, we observed that the Frobenius distance,
which is very quick to compute, was doing a reasonable job. We denote this representation of the
kernel combinations by rd. The final representation for any each combination is therefore r = [rg, rd],
which has dimension (Nmax + 1)|B|+ (Nmax − 1)|O| for Nmax the maximum number of allowed
operations (added kernels).

2.3 Kernel Grammar Variational Auto-encoder (KG-VAE)

This section describes a bespoke VAE for our problem, the Kernel Grammar Variational Auto-encoder
(KG-VAE). It is used to learn a latent where all possible candidate models in M are represented. The
key elements of KG-VAE are the encoder and the decoder. The encoder is a Gaussian distribution
where the mean is the output of one feed-forward layer with Relu activation function:

log q(z|r) = logN (z : µ, σ2I) for µ = W2h + b2 , h = Relu(W1r + b1),

where W1, W2 and b1 and b2 are the weights of the model, which can be extended to with more inter-
mediate layers. For the decoder let π = exp(W4Relu(W3z+b4)+b5) be the mapping parameters of
a point z in the latent space where W3, W4 and b4 and b5 are extra parameters of the model. Consider
the partitions of π = [πd,πg] and r = [rd, rg] where the subindice g refers to the components of the
grammar representation and d for the distance based representation. The likelihood of the decoder
can by factored as p(r|z) = p(rd|πd)p(rg|πg) where p(rg|πg) = p(rg1)

∏Nmax

j=1 p(rgj+1 |rgj ) is the
likelihood of the grammar representation. Each factor p(rgj+1 |rgj ) follows a Multinomial distribution
with normalised parameter πj/sum(πj). The conditional dependency on the previous factor refers to
the appearance of Stop operation. An advantage of the KG-VAE is that the kernel we learn is always
feasible. Note also that the generation of the grammars and the training of KG-VAE can all be done
off-line, as we do not need to evaluate the objective in (1) for each kernel data point used in the
training phase.

2.4 Probabilistic Search on Latent Model Spaces
Let Z the latent space learned by the KG-VAE. To approach (1) we apply BO on Z. Denote byMr the
model associated to the representation r. We reformulate (1) as

z∗ := arg max
z∈Z

E(Mr̃|z). (2)
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Algorithm 2 The PROLAS algorithm.

Input: D, B, pB, O, pO, Nmax and Niter.
Use Algorithm 1 to generate a series of modelsM and their representations r.
Train a KG-VAE on the generated set.
Compute D̃1 = {(z1, E(Mr̃|z1

))}
for j = 0 to Niter do

1. Fit a GP with kernel k to the generated representation.
2. Optimize the acquisition α(z) and obtain zj+1.
5. Augment D̃j+1 = {D̃j ∪ [zj+1, E(Mr̃|zj+1

))}.
end for
Returns: Report z?Niter

.

Off-line

Figure 2: Results for the Airline dataset using PROLAS and comparison with CSK (bottom right).

where r̃|z is the mode of p(r|z). We use BO to search the optimal z∗: we select a series of locations
z1, . . . , zNiter such that the minimum of E(Mr̃|z) is evaluated as quickly as possible. We use a GP

p(f) = GP(µ; k) with mean function µ and positive-definite kernel k that we fit to the currently
observed locations. Under Gaussian likelihoods, the posterior distribution of f (for a sample of size
n) is also a GP, with posterior mean and variance available in closed form [8]. The posterior of the
GP is used to form the acquisition function α. The next evaluation is placed at the global maximum
of this acquisition function [9]. See Algorithm 2.

3 Experiments
We applied the PROLAS algorithm to fit the the Airline Passenger Data, a time series with 144 time
steps. We used 4 base kernels, Squared exponential, Linear, Periodic and Rational Quadratic. We
used uniform prior probabilities in both the grammar operations and the base kernels. We allow a
maximum of 5 operations in the grammar generating process. The used KG-VAE we has 2 hidden
layers with 400 hidden units. In Figure 2 (top row and bottom left) we show the fit of the model
proposed by PROLAS to the data set when an increasing number of training data are used (10%, 25%,
50% and 75%). Interestingly, 10% of the data already some of the seasonal structure is captured.
With 75% of the data the fit in the test set is excellent. In Figure Figure 2 (bottom row, center) we
show the mean square error in the prediction set for base kernels and in the combination proposed by
PROLAS, which consistently improve the base kernels, specially when the data size increases. Finally
we compare PROLAS with the greedy compositional kernel search (CSK) [4]. In Figure 2 (bottom
row, right) we show the BIC found in terms of the number of evaluated models for 20 runs of with
different initialization. PROLAS converges to a better solution faster than CSK.
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4 Conclusions and future work
In this work we have presented a new algorithm, PROLAS, to perform Bayesian optimization in
the context of the Automatic Statistician. The methods follow some previous efforts to optimize
in combinatorial spaces [7]. It is based on a new KG-VAE that allows to map an arbitrarily large
number of GP models into a low dimensional Euclidean space in which BO is feasible. A first set
of experiments show the utility of this approach. Further validation in other datasets and the deep
analysis of the properties of the method are left as future work. Further efficiency by using parallel
approaches [10] will also be investigated.
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