
Knowledge-Gradient
Methods for Bayesian

Optimization
Peter I. Frazier

Cornell University
Uber

Wu, Poloczek, Wilson & F., NIPS’17  
Bayesian Optimization with Gradients

Wu & F., NIPS’16  
The Parallel KG Method for Batch Bayesian Optimization

Poloczek, Wang & F., NIPS’17  
Multi Information-Source Optimization

Jian Wu Andrew Wilson Matthias Poloczek Jialei Wang

Bayesian Optimization algorithms
use acquisition functions

Generic BO algorithm:

Elicit a prior distribution on the function f  
(typically a GP).

while (budget is not exhausted) {

Find x that maximizes Acquisition(x,posterior)

Sample at x

Update the posterior distribution

}

There are a few commonly used
acquisition functions

Most people use this one

• Expected Improvement (EI)

Some people use one of these

• Expected Improvement (EI)

• Predictive Entropy Search (PES)

• Upper Confidence Bound (UCB)

• Probability of Improvement (P*)

I’ll tell you why you might want to try
this one, & give you a link to code

• Expected Improvement (EI)

• Upper Confidence Bound (UCB)

• Predictive Entropy Search (PES)

• Probability of Improvement (P*)

• Knowledge Gradient (KG)

Let me remind you about EI

• We’ve evaluated x(1),...x(n),
& observed f(x(1)),…,f(x(n))
without noise.

• The best value observed
is f*=min(f(x(1)),…,f(x(n))).

• If we evaluate at x,  
we observe f(x).

• The improvement is (f*-f(x))+

• The expected improvement is
EI(x)=En[(f*-f(x))+]

• One-step: We may evaluate
f only one more time.
After, we must report a
solution.

• We are risk-neutral, and
suffer loss equal to the
value of the reported
solution

• Evaluations are noise-free

• The solution we report
must have known value

EI is one-step Bayes-optimal under assumptions

• Loss if we stop now:  
f*

• Loss if we stop after sampling f(x):  
min(f*,f(x))

• Reduction in loss due to sampling:  
En[f*- min(f*,f(x))] = En[(f*- f(x))+] = EI(x)  

EI is one-step Bayes-optimal under assumptions

Posterior @ time n Posterior @ time n+1

f* min(f*,f(x))

EI places no value on some kinds of information

• Loss if we stop now:  
f*

• Loss if we stop after sampling f(x) & its gradient:
min(f*,f(x))

• Reduction in loss due to sampling:  
En[f*- min(f*,f(x))] = En[(f*- f(x))+] = EI(x)  

Posterior @ time n Posterior @ time n+1

f* min(f*,f(x))

As a consequence,
EI can make poor

decisions
EI wants to
evaluate here

It would probably be
better to evaluate here

• One-step: We may evaluate
f only one more time.
After, we must report a
solution.

• We are risk-neutral, and
suffer loss equal to the
value of the reported
solution

• Evaluations are noise-free

• The solution we report
must have known value

KG eliminates two of EI’s assumptions

• Loss if we stop now:  
𝜇*n = minx 𝜇n(x)

• Loss if we stop after sampling f(x):  
𝜇*n+1 = minx 𝜇n+1(x)

• Reduction in loss due to sampling:  
KG(x) = En[𝜇*n - 𝜇*n+1 | query x]  

Posterior @ time nPosterior @ time n

f*𝜇*n

The KG acquisition function, KG(x) 
for an observation with gradients

• Loss if we stop now:  
𝜇*n = minx 𝜇n(x)

• Loss if we stop after sampling f(x):  
𝜇*n+1 = minx 𝜇n+1(x)

• Reduction in loss due to sampling:  
KG(x) = En[𝜇*n - 𝜇*n+1 | query x]  

Posterior @ time n Posterior @ time n+1Posterior @ time n Posterior @ time n+1

f*𝜇*n min(f*,f(x))
𝜇*n+1

The KG acquisition function, KG(x) 
for an observation with gradients

• Loss if we stop now:  
𝜇*n = minx 𝜇n(x)

• Loss if we stop after sampling f(x):  
𝜇*n+1 = minx 𝜇n+1(x)

• Reduction in loss due to sampling:  
KG(x) = En[𝜇*n - 𝜇*n+1 | query x]  

Posterior @ time n Posterior @ time n+1Posterior @ time n Posterior @ time n+1

f*𝜇*n min(f*,f(x))
𝜇*n+1

KG values
this outcome; 
EI doesn't

The KG acquisition function, KG(x) 
for an observation with gradients

Here’s how we can compute the KG acquisition function
for BO with gradients

Posterior @ time n Posterior @ time n+1

f*𝜇*n 𝜇*n+1

min(f*,f(x))

• Reduction in loss due to sampling: 
En[𝜇*n - 𝜇*n+1] 

Here’s how we can compute the KG acquisition function
for BO with gradients

Posterior @ time n Posterior @ time n+1

f*𝜇*n 𝜇*n+1
min(f*,f(x))

• Reduction in loss due to sampling: 
En[𝜇*n - 𝜇*n+1] 

Here’s how we can compute the KG acquisition function
for BO with gradients

Posterior @ time n Posterior @ time n+1

f*𝜇*n

𝜇*n+1

min(f*,f(x))

• Reduction in loss due to sampling: 
En[𝜇*n - 𝜇*n+1] 

Here’s basic pseudocode for 
computing the KG acquisition function

For i in 1:replications

• Simulate f(x), ∇f(x) from the posterior

• Calculate 𝜇*n+1 = minx’ 𝜇n+1(x’) from sim’d f(x), ∇f(x)

• Calculate 𝜇*n - 𝜇*n+1

KG(x) is the average of the simulated 𝜇*n - 𝜇*n+1

* I’ll discuss a faster computational method in a few minutes

KG explores more effectively than EI
when we have gradients

KG explores more effectively than EI
when we have gradients

KG explores more effectively than EI
when we have gradients

KG explores more effectively than EI
when we have gradients

KG explores more effectively than EI
when we have gradients

Branin	(2-d,	batch	size=4) Rosenbrock	(3-d,	batch		size=4) Levy	(4-d,	batch	size=8)

Ackley	(5-d,	batch	size=4) Hartmann	(6-d,	batch	size=8) Cosine	(8-d,	batch	size=4)

funcGon	evaluaGons funcGon	evaluaGons funcGon	evaluaGons

lo
g1
0(
im

m
ed

ia
te
	re

gr
et
)

lo
g1
0(
im

m
ed

ia
te
	re

gr
et
)

KG provides substantial value over EI when we have gradients

Wu,	Poloczek,	Wilson	&	F.,	Bayesian	OpGmizaGon	with	Gradients,	NIPS’17

K-nearest	Neighbor

RM
SE

funcGon	evaluaGons

lo
g1
0(
m
ea
n	
cr
os
s-
en

tr
op

y	
lo
ss
)

funcGon	evaluaGons

Neural	Network

funcGon	evaluaGons

Spectral	Mixture	Kernel

lo
g1
0(
-lo

g-
lik
el
ih
oo

d)
m
ea
n	
cr
os
s-
en

tr
op

y	
lo
ss

funcGon	evaluaGons

LogisGc	Regression
KG provides substantial value over EI when we have gradients

Wu,	Poloczek,	Wilson	&	F.,	Bayesian	OpGmizaGon	with	Gradients,	NIPS’17

Wu	&	F.,	The	Parallel	KG	Method	for	Batch	Bayesian	OpGmizaGon,	NIPS’16

Ackley	(5-d,	batch	size=4,	no	noise) Hartmann	(6-d,	batch	size=4,	no	noise)

Branin	(2-d,	batch	size=4,	no	noise) Rosenbrock	(3-d,	batch	size=4,	no	noise)
lo
g1
0(
im

m
ed

ia
te
	re

gr
et
)

lo
g1
0(
im

m
ed

ia
te
	re

gr
et
)

KG provides substantial value over EI when we don’t have gradients
when there is noise, or we are in > 1 dim.

Wu	&	F.,	The	Parallel	KG	Method	for	Batch	Bayesian	OpGmizaGon,	NIPS’16

Ackley	(5-d,	batch	size=4,	noisy) Hartmann	(5-d,	batch	size=4,	noisy)

Branin	(2-d,	batch	size=4,	noisy) Rosenbrock	(3-d,	batch	size=4,	noisy)

KG provides substantial value over EI when we don’t have gradients
when there is noise, or we are in > 1 dim.

KG provides substantial value over EI when we don’t have gradients
when there is noise, or we are in > 1 dim.

Wu	&	F.,	The	Parallel	KG	Method	for	Batch	Bayesian	OpGmizaGon,	NIPS’16

Training	Hyperparameters		of 
LogisGc	Regression	on	MNIST  
(4-d,	batch	size=4,	no	noise)

Training	Hyperparameters		of 
CNN	Regression	on	CIFAR10 
(8-d,	batch	size=4,	no	noise)

How can we
optimize KG(x)

efficiently?

Recall this method for computing the KG
acquisition function, KG(x)

For i in 1:replications

• Simulate f(x), ∇f(x) from the posterior

• Calculate 𝜇*n+1 = minx’ 𝜇n+1(x’) from sim’d f(x), ∇f(x)

• Calculate 𝜇*n+1 - 𝜇*n

KG(x) is the average of the simulated 𝜇*n+1 - 𝜇*n values

Our approach to maximizing dKG(x1:q)

1.Estimate ∇dKG(x1:q) 
using infinitesimal perturbation analysis (IPA).

2.Use multistart stochastic gradient ascent to find an approximate
solution to solve argmax dKG(x1:q). 

Previous papers used IPA to calculate the derivatives in the batch
measurement setting of the knowledge-gradient [Wu & Frazier 2016]
and the expected improvement [Wang, Clark, Liu, & Frazier 2016].

Our approach differs in its use of the envelope theorem to avoid
discretization.

• Y=[f(xi), ∇f(xi) : i=1:q]’ is multivariate normal with dim. q(d+1)

• Y=m(x1:q) + C(x1:q)Z, where Z is a standard normal random
vector

• Write the dependence of μn+q(x) on x1:q and Y explicitly as
μn+q(x; x1:q, m(x1:q) + C(x1:q)Z)

• ∇dKG(x1:q) = ∇E[minx in A μn+q(x; x1:q, m(x1:q) + C(x1:q)Z)]  
 = E[∇minx in A μn+q(x; x1:q, m(x1:q) + C(x1:q)Z)]  
 = E[∇μn+q(x*; x1:q, m(x1:q) + C(x1:q)Z)],  
 
where x* = argminx in A μn+q(x; x1:q, m(x1:q) + C(x1:q)Z)  
and its dependence on x1:q is ignored when taking the gradient.

Here’s how we estimate ∇dKG

1.Calculate the mean m(x1:q) and the Cholesky
decomposition C(x1:q) of the covariance matrix
of Y=[f(xi), ∇f(xi) : i=1:q]’ under the time n
posterior distribution.

2. Simulate a standard normal random vector Z. 
Let Y = m(x1:q) + C(x1:q)Z

3.Use a nonlinear solver to calculate 
x* in argminx μn+q(x; x1:q, Y)

4.Our estimator of ∇KG(x1:q) is 
G=∇μn+q(x*; x1:q, m(x1:q) + C(x1:q)Z),  
holding x* fixed

Here’s how we estimate ∇dKG

Our estimator of the gradient
is unbiased

Theorem: When the posterior mean μn and covariance kernel Σn are
continuously differentiable and the domain A is compact,  
G is an unbiased estimator of ∇dKG(x1:q)

Proof:

- Use conditions in L’Ecuyer 1990 to interchange ∇ and expectation.

- Use the envelope theorem (Milgrom and Segal 2002) to hold x* fixed

KG converges to a globally optimal
solution over a discrete domain

Theorem: When the domain A is discrete &
finite, the KG algorithm is consistent, i.e.,

 
almost surely under the prior, where x*(KG,N) is
the solution computed by KG after N batches
of samples.

lim

N!1
f(x

⇤
(dKG, N)) = max

x2A

f(x)

Wu,	Poloczek,	Wilson	&	F.,	Bayesian	OpGmizaGon	with	Gradients,	NIPS’17

KG is useful for other BO problems too:  
multi-task, multi-fidelity & multi-information source

optimization

Poloczek,	Wang	&	F.,	MulG	InformaGon-Source	OpGmizaGon,	NIPS’17

KG is useful for other BO problems too:  
multi-task, multi-fidelity & multi-information source

optimization

• objective f(s,x) ~ GP(mu,Sigma)

• cost c(s,x) ~ GP(mu,Sigma)

• s indexes information sources (IS)  
s=0 is the target we wish to optimize  
x indexes designs

• Goal: solve minx f(0,x) using (possibly noisy)
queries to f(s,x) at cost c(s,x)

Poloczek,	Wang	&	F.,	MulG	InformaGon-Source	OpGmizaGon,	NIPS’17

Expected Improvement isn’t 
that helpful when used directly in this problem

When you sample s≠0 at x:  
you change the posterior on f,  
but you don’t observe f(0,x).  
There is no improvement in the best solution seen

Using EI requires hacking [see, e.g., Lam et al. 2015]

KG works out of the box

Poloczek,	Wang	&	F.,	MulG	InformaGon-Source	OpGmizaGon,	NIPS’17

KG(s,x) := En[𝜇*n - 𝜇*n+1 | query x using IS s],

where, 𝜇*n := minx 𝜇n(x)

𝜇n(s,x):= En[f(0,x)] is the posterior mean
on the target at x

Since cost varies, we sample the s,x that maximizes KG(s,x)/cost(s,x)

Assemble	to	OrderImage	ClassificaGon	[Swersky	et	al.	2013]

Rosenbrock	[Lam	et	al.	2015] Rosenbrock	#2

KG provides substantial value over EI  
(and predictive entropy search)

Poloczek,	Wang	&	F.,	MulG	InformaGon-Source	OpGmizaGon,	NIPS’17

Predictive Entropy Search
(PES)

• PES [Hernandez-Lobato et al. 2014] selects
the sample that maximizes the expected
reduction in the entropy of x*  
 
PES(x) = H[pn(x*)] - E[H(pn+1(x*)) | query x]

• Works well, if reducing the entropy of x*
corresponds to reducing simple regret

• Much more expensive to compute than EI

Reducing the entropy of x* by a lot doesn’t
always mean you reduce simple regret by a lot

• Our goal: solve minx f(x), where x in R2

• Let g(x1,x2) = f(x1 / 10, x2 * 10)

• When we run PES on g instead of f,  
PES will work much harder to learn x2* 
and will have very different simple regret

• To make the problem worse, suppose f is
additive across coordinates, and we observe
directional derivatives

Reducing the entropy of x* by a lot doesn’t
always mean you reduce simple regret by a lot

• Our goal: solve minx f(x), where x in R2

• Let g(x1,x2) = f(x1 / 10, x2 * 10)

• When we run PES on g instead of f,  
PES will work much harder to learn x2* 
and will have very different simple regret

• To make the problem worse, suppose f is
additive across coordinates, and we observe
directional derivatives

Reducing the entropy of x* by a lot doesn’t
always mean you reduce simple regret by a lot

• Our goal: solve minx f(x), where x in R2

• Let g(x1,x2) = f(x1 / 10, x2 * 10)

• When we run PES on g instead of f,  
PES will work much harder to learn x2* 
and will have very different simple regret

• In contrast, KG’s simple regret is invariant to
such transformations  

Give KG a try
• KG tends to have better query efficiency than

EI when the improvement in the posterior is
not at the queried point.

• Both KG & PES value improvement in the
posterior away from the queried point.

• KG directly values reduction in the simple
regret, while PES values it indirectly.

• KG is slower to code & compute than EI.  
It is comparable to PES.

Code is available:  
https://github.com/wujian16/Cornell-MOE (try this 1st)
https://github.com/misokg

Uber is hiring in BayesOpt: 
Email pfrazier@uber.com 

or zoubin@uber.com

https://github.com/wujian16/Cornell-MOE

