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Reproducibility crisis

HOW MUCH PUBLISHED WORK IN YOUR
FIELD IS REPRODUCIBLE?

Physicists and chemists were most confident in the literature.
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Number of respondents from each discipline:
Biology 703, Chemistry 106, Earth and environmental 95,
Medicine 203, Physics and engineering 236, Other 233

HAVE YOU FAILED TO REPRODUCE
AN EXPERIMENT?

Most scientists have experienced failure to reproduce results.

® Someone else’s My own

Chemistry

Biology

Physics and
engineering

Medicine

Earth and
znvironment

Other
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Survey by Nature 2016
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Reproducibility crisis

Disciplines most profoundly affected:

« Biomedical sciences
« Psychology
« Cognitive Sciences

loannidis et et al. TiCS 2014, Head et al. PLOS Biol. 2015,
Szucs & loannidis PLOS Biol. 2017, ...
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Reproducibility crisis in Cognitive Sciences

* Cognitive biases
- |KEA-effect z
- Texas sharp-shooter effect

 Bad research practices
- P-hacking
- HARKing
- File-drawer effect

* Limitations of methodology

- Underpowered studies
- “Narrow” experimental designs
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Aims of cognitive neuroscience

Research questions Standard approach

What are the fundamental aspects
Of Cog n |t|0n? select task

What are the fundamental roles of
distinct networks in the brain?

test
How can cognitive processes
be modulated or enhanced?
group-level
inference
€ >
broad narrow
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Aims of cognitive neuroscience

Human-brain mapping Standard approach
» Over-specified inferences about

functional-anatomical mappings

 Inflated test statistics
(Westfall et al. Wellcome Open Research 2017) select task

Biomarker discovery
« Which exact task conditions will be test

sensitive to certain patient group?
(Sprooten et al. Human Brain Mapping 2017)

Non-invasive brain stimulation group-level
- Many free parameters, confusion inference
surrounding efficacy
<€ >
broad narrow
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2. The framework

Neuroadaptive Bayesian optimization Romy Lorenz NIPS Workshop 2017



The framework

open-loop closed-loop
machine learning

e stimuli manually oo
adapted to subject Supervise
passive learning active learning

e BCls e tuning curve

e subject modulates
estimation

brain response e advanced

e.g. neurofeedback,
communication with vegetative neurofeed-

state patients b ack
® neural
selectivity

informed open-loop
e stimuli is triggered by brain state

Lorenz et al. Trends in Cognitive Sciences 2017
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“The Automatic Neuroscientist”

1 experimental condition

4 Bayesian optimization 2 real-time fMRI
Neuroadaptive
i -
Bgyc::-sm_n S
optimization . - ~ €

\ brain state analy

Lorenz et al. Neurolmage 2016
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Overview

3. Validation study
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Target brain state

lateral occipital cortex activity A\ superior temporal cortex activity W

masks derived from
Braga et al. Neurolmage 2013
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Experiment space
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Bayesian optimization

Gaussian Propose new
process (GP) e stimul
regression nowledge combination

“close the
loop”

Rasmussen & Williams 2006
Brochu et al. arXiv 2010
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Bayesian optimization

Gaussian
process (GP) “update
regression knowledge

squared exponential kernel:

. _ 2
choice of k(x,y) = o2 exp {_ (x2 lzy) }
covariance function
x,y € R? audio-visual stimulus
o2 €R variance of covariance kernel
lER length of covariance kernel

Rasmussen & Williams 2006
Brochu et al. arXiv 2010
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Bayesian optimization

Propose new
stimuli
combination

Expected improvement acquisition function:

EI(x) = (m(x) = finax)q(2) + var(x)p(z)

m(x): predicted mean
var(x): predicted variance
f,

max*

q0): cumulative distribution function

maximum predicted value choice of

acquisition function
p0: probability density function

“close the
loop”

_ m(x) — fmax
 var(x)

Rasmussen & Williams 2006
Brochu et al. arXiv 2010
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Results

T =>

13- MUN_01 . run_02 . run_03 , run_04

S 124 m— sub_01
> E.. m— sub_02
L = : : I sub_03
5 104 8-10_ E—sub_05
© 9 4

J0N [
7- H . .

6 =

5 4

4 4

Euclidean distance from

Rt

119 2038  39-57  58-76
iterations

suboptimal [T Joptimal

Bayesian estimates

Lorenz et al. Neurolmage 2016

Neuroadaptive Bayesian optimization Romy Lorenz NIPS Workshop 2017



Overview

4. Application 1: Human br
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Motivation

Maths task

Go/No-Go task

N-back task

Stroop task Divided attention task

frontoparietal
networks
(FPNs)

Duncan & Owen TiNS 2000
Fedorenko et al. PNAS 2013
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Motivation

Maths task

Go/No-Go task

N-back task

Stroop task Divided attention task

frontoparietal
networks
(FPNs)

Hampshire et al. Neuron 2012
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Motivation

Maths task

Go/No-Go task

N-back task

Stroop task Divided attention task

- Limited generalizability
« Limited reproducibility

Lorenz et al. Trends in Cognitive Sciences 2017
Westfall et al. Wellcome Open Research 2017
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Searching across cognitive tasks

select task for
1 next block

B

4 Bayesian 2 real-time
optimization neuroadaptive fMRI
Bayesian
= - - A
optimization <
<

3 real-time fMRI
analysis
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Task space based on meta-analysis

Tower of
London
Y
= S
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Yeo et al. Cerebral Cortex 2015
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Find optimal tasks

fi = 10

burn-in hypothesized

closed-loop group-level prediction

>.19
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Tower of London & Deductive Reasoning tasks maximally dissociate FPNs
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Zoom In task space and fine-tune tasks

Deductive Tower of
Reasoning London
9
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Find optimal task parameters

2D iii- 10

closed-loop group-level prediction closed-loop
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Find unique functional profile

2D =10

dorsal FPN > 3 other FPNs ventral FPN > 3 other FPNs

hypothesized hypothesized

group-level prediction l: group-level prediction
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« High inter-subject reliability

* Functional profile across many tasks is unique to each
PN

« Set of optimal tasks only partially corresponds to meta-
analysis and previous functional labels

* Neurally-derived cognitive taxonomy needed

 Powerful synergy between neuroadaptive Bayesian
optimization and meta-analyses

Lorenz et al. under revision (bioRxiv:128678)
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5. Application 2: Brain stimulati£
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Transcranial alternating current stimulation (tACS)

u Statu S Q u 0 target elecodes

— Ad hoc definition of frequency 'AVA"
and phase
— Cohort testing %VAW

Ines Violante

stimulator 1

stimulator 2

= Limitation

1. How to choose frequency and
phase?

phase (degree)
in - out - in phase

0/1\5 /8\/1</1\6 20 26 40 80 2. Stimulation parameters may vary
—NVWW) due to anatomy or pathology
slow - fast

frequency (Hz)
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Concurrent real-time fMRI/XACS

m real-time fMRI loop
. tACS loop

raW data TR trigger Ines Violante
I s\itch task

subject in MR scanner

brain . .\A
| _— ~F
volumes | Q\ .

stimulation
->¢—> tACS

Lorenz et al. PRNI 2016
Lorenz et al. in preparation

=

sync via
TR trigger
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Phosphene perception

= Phosphenes = flash-like
percepts during brain

stimulation Ines Violante

= Major experimental

challenge _ 3 Bayesian optimization 2 preference rating
(neuromodulation,
altertness) V

iter: 01 iter: 02 iter: 03 iter: 04

Gaussian Process
5
p

Lorenz et al. under revision
0 4 8 14 26 47 86 0 4 8 14 26 47 86 0 4 8 14 26 47 86 0 4 8 14 26 47 86 (bIORX|V150086)

Frequency Frequency Frequency Frequency
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6. Ongoing work
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COGNITROMN Al-web server to dissect human intelligence

Adam
Hampshire

N> 15,000
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7. Implications & Discussion
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Implications for improving reproducibility

* More flexible
hypothesis possible
(exploration)

* Improved specifity &
generalizability of
research findings

« Can be combined
with pre-registration

Analysis

Bayesian
optimization

04

Data
analysis 02
Data
03 acquisition

Lorenz et al. TiCS 2017
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Future work — need for method development

» Addressing small effect sizes
— Hierarchical optimization protocol

= Diagnosis: biomarker discovery
- Novel acquisition functions

= Therapy: tuning to individual patient
— Statistical inference on objective function/sampling trajectory

= General:
- Sopping criteria
- Non-stationarity in time (habituation)
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Resources Questions/Feedback?

™ lorenz.romy@gmail.com
@romy_lorenz
» Code L4

- GP regression: http://github.com/SheffieldML/GPy
- Acquisition functions: http://github.com/romylorenz/AcquisitionFunction
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