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Disciplines most profoundly affected:

• Biomedical sciences

• Psychology 

• Cognitive Sciences
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What are the fundamental aspects 

of cognition?

What are the fundamental roles of 

distinct networks in the brain?

How can cognitive processes 

be modulated or enhanced?

Aims of cognitive neuroscience

broad narrow

Research questions

> 20

threshold of p ! 0.05. Group-level images were visualized on an average
surface brain using MRICron (Rorden and Brett, 2000).

EEG-informed imaging analysis
In the next part of the study we examined the way in which EEG cascades
relate to activation at the spatiotemporal scale measured by fMRI. At the
subject level, statistical analyses were performed in FSL FILM using ran-
dom effects GLMs with local autocorrelation correction by voxelwise
temporal prewhitening. Design matrices were generated for the voxel-
wise time series analysis with double-gamma HRF functions, in addition
to the first derivatives of explanatory variables (EVs) to account for tem-
poral offsets. The timings of large EEG cascades (above a high SD trigger
threshold) were entered as EVs in the GLM. We do this to quantify how
much of the variance in fMRI activity can be explained solely by EEG
cascades, with the effects of motion and task activation covaried from the
data, as described in the following paragraph.

Cascades occurring during times of possible motion in the EEG trace
were entered as confound EVs in the GLMs. In addition to EEG motion
confounds, both fMRI motion parameters (six columns) and fMRI mo-
tion outliers (FSL motion outliers) were also entered into the GLM as
covariates of no interest. Further, a task-block regressor was entered as a
confound EV to account for mean offset effects in the difference between
rest and task. This was done to prevent the GLM from falsely attributing
task timing-related variance in the fMRI data to cascades in the EEG. All
EVs were high-pass filtered at the same cutoff frequency as the fMRI data.
The resulting individual subject-level parameter estimates were then en-
tered into high-level (mixed-effects) cluster-corrected FEAT analyses;
these investigated whether there were overall effects of EEG cascades
across all three conditions and each condition individually, as well as a
within-subject ANOVA, investigating differences between conditions.
The analysis of group effects was performed using FLAME with mean
relative rms motion parameters as confound regressors to control for any
residual subject-level motion. All final group-level images were thresh-
olded using a cluster correction threshold of Z " 2.3 and a cluster signif-
icance threshold of p ! 0.05. Group-level images were visualized on an
average surface brain using MRICron.

We extract EEG cascade explanatory variables using a threshold of 2
SD (results remain consistent between 2 and 4.5 SD and binning win-
dows of 4 –12 ms). Below an SD of 2, the EEG cascade time courses show
very little variance, given the downsampling required to match the fMRI
temporal resolution. To further test the robustness of these results, the
above analysis was rerun with cascade time courses that had been gener-
ated by (1) using cascade timings with the same mean and SD of start
times and durations as the empirical data; (2) using cascade timings from
the empirical data, for which the start times had been shifted by #5 s; and
(3) using cascade timings generated from data in which the time courses
of individual channels had been shuffled using circular permutation with
random offset. None of these three methods showed any significant associ-
ation with BOLD signal, which demonstrates that the results are not artifac-
tual, but rather arise from a genuine relationship between EEG and fMRI.

Individual variability in cognitive performance
Finally, we investigated the relationship between individual subjects’ re-
action times during task and how far their neural dynamics operate from
criticality, as quantified by !. We calculated correlations between reac-
tion times and ! across all participants using linear mixed-effects models
to account for the multiple reaction times considered for the same
subjects.

Results
Task-related functional imaging activation
Before investigating the EEG-domain cascades and their relation-
ship to cognitive state, we first explored the fMRI data with stan-
dard contrasts to illustrate which brain regions are activated, as
well as deactivated, by task. This provides a way of interpreting
the spatial pattern of BOLD signal associated with the EEG-
defined cascade time courses. Figure 2A demonstrates the effects
of task"intermittent rest and intermittent rest"task contrasts
during the CRT. The results show that, as expected, task perfor-

mance is associated with activation within predominantly higher
order visual and motor systems, including ventral and dorsal
visual streams and superior prefrontal regions, as well as within
the basal ganglia (Bonnelle et al., 2011; Sharp et al., 2011). Greater
activation for intermittent rest over task is observed in the medial
early visual regions, as well as in the precuneus and lateral inferior
parietal regions, consistent with nodes of the default mode net-
work (DMN; Raichle et al., 2001).

Mapping EEG cascades to functional images
We next identified regions in which activation corresponded to
EEG-defined cascades, by using cascade time courses to interro-
gate the fMRI data: providing additional information to charac-
terize the EEG-defined cascades. Figure 2, B–E, shows brain
regions for which there is significant positive correlation between
the timings of EEG cascades and fMRI activity. We first investi-
gated the effect of EEG cascades obtained from an amalgamation
of data from all cognitive states on the fMRI data (Fig. 4B). These
generalized cascades are associated with increased BOLD signal

Figure 2. Spatial maps of fMRI activity. Cluster-corrected group-level statistics, with motion
regressed from the data, projected onto the standard MNI 152 2 mm brain, as well as onto axial
slices, for A–E. A, Standard contrast. CRT"rest: warm colors are voxels with relative activation,
cold colors are voxels with relative deactivation. B, BOLD signal associated with EEG-defined
cascades (using a threshold of 2 SD to define the EEG cascades). Results are combined across all
three conditions: continuous rest, task, and intermittent rest. C, Same as B, but with only
continuous rest data. D, Same as B but with CRT task data (significant effect of cascades is only
apparent using the lower threshold, SD " 2; with higher thresholds no voxels survive multiple-
comparison correction. E, Same as B, but with only intermittent rest data.

4630 • J. Neurosci., March 18, 2015 • 35(11):4626 – 4634 Fagerholm et al. • Attention Incurs Subcritical Neural Dynamics
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threshold of p ! 0.05. Group-level images were visualized on an average
surface brain using MRICron (Rorden and Brett, 2000).

EEG-informed imaging analysis
In the next part of the study we examined the way in which EEG cascades
relate to activation at the spatiotemporal scale measured by fMRI. At the
subject level, statistical analyses were performed in FSL FILM using ran-
dom effects GLMs with local autocorrelation correction by voxelwise
temporal prewhitening. Design matrices were generated for the voxel-
wise time series analysis with double-gamma HRF functions, in addition
to the first derivatives of explanatory variables (EVs) to account for tem-
poral offsets. The timings of large EEG cascades (above a high SD trigger
threshold) were entered as EVs in the GLM. We do this to quantify how
much of the variance in fMRI activity can be explained solely by EEG
cascades, with the effects of motion and task activation covaried from the
data, as described in the following paragraph.

Cascades occurring during times of possible motion in the EEG trace
were entered as confound EVs in the GLMs. In addition to EEG motion
confounds, both fMRI motion parameters (six columns) and fMRI mo-
tion outliers (FSL motion outliers) were also entered into the GLM as
covariates of no interest. Further, a task-block regressor was entered as a
confound EV to account for mean offset effects in the difference between
rest and task. This was done to prevent the GLM from falsely attributing
task timing-related variance in the fMRI data to cascades in the EEG. All
EVs were high-pass filtered at the same cutoff frequency as the fMRI data.
The resulting individual subject-level parameter estimates were then en-
tered into high-level (mixed-effects) cluster-corrected FEAT analyses;
these investigated whether there were overall effects of EEG cascades
across all three conditions and each condition individually, as well as a
within-subject ANOVA, investigating differences between conditions.
The analysis of group effects was performed using FLAME with mean
relative rms motion parameters as confound regressors to control for any
residual subject-level motion. All final group-level images were thresh-
olded using a cluster correction threshold of Z " 2.3 and a cluster signif-
icance threshold of p ! 0.05. Group-level images were visualized on an
average surface brain using MRICron.

We extract EEG cascade explanatory variables using a threshold of 2
SD (results remain consistent between 2 and 4.5 SD and binning win-
dows of 4 –12 ms). Below an SD of 2, the EEG cascade time courses show
very little variance, given the downsampling required to match the fMRI
temporal resolution. To further test the robustness of these results, the
above analysis was rerun with cascade time courses that had been gener-
ated by (1) using cascade timings with the same mean and SD of start
times and durations as the empirical data; (2) using cascade timings from
the empirical data, for which the start times had been shifted by #5 s; and
(3) using cascade timings generated from data in which the time courses
of individual channels had been shuffled using circular permutation with
random offset. None of these three methods showed any significant associ-
ation with BOLD signal, which demonstrates that the results are not artifac-
tual, but rather arise from a genuine relationship between EEG and fMRI.

Individual variability in cognitive performance
Finally, we investigated the relationship between individual subjects’ re-
action times during task and how far their neural dynamics operate from
criticality, as quantified by !. We calculated correlations between reac-
tion times and ! across all participants using linear mixed-effects models
to account for the multiple reaction times considered for the same
subjects.

Results
Task-related functional imaging activation
Before investigating the EEG-domain cascades and their relation-
ship to cognitive state, we first explored the fMRI data with stan-
dard contrasts to illustrate which brain regions are activated, as
well as deactivated, by task. This provides a way of interpreting
the spatial pattern of BOLD signal associated with the EEG-
defined cascade time courses. Figure 2A demonstrates the effects
of task"intermittent rest and intermittent rest"task contrasts
during the CRT. The results show that, as expected, task perfor-

mance is associated with activation within predominantly higher
order visual and motor systems, including ventral and dorsal
visual streams and superior prefrontal regions, as well as within
the basal ganglia (Bonnelle et al., 2011; Sharp et al., 2011). Greater
activation for intermittent rest over task is observed in the medial
early visual regions, as well as in the precuneus and lateral inferior
parietal regions, consistent with nodes of the default mode net-
work (DMN; Raichle et al., 2001).

Mapping EEG cascades to functional images
We next identified regions in which activation corresponded to
EEG-defined cascades, by using cascade time courses to interro-
gate the fMRI data: providing additional information to charac-
terize the EEG-defined cascades. Figure 2, B–E, shows brain
regions for which there is significant positive correlation between
the timings of EEG cascades and fMRI activity. We first investi-
gated the effect of EEG cascades obtained from an amalgamation
of data from all cognitive states on the fMRI data (Fig. 4B). These
generalized cascades are associated with increased BOLD signal

Figure 2. Spatial maps of fMRI activity. Cluster-corrected group-level statistics, with motion
regressed from the data, projected onto the standard MNI 152 2 mm brain, as well as onto axial
slices, for A–E. A, Standard contrast. CRT"rest: warm colors are voxels with relative activation,
cold colors are voxels with relative deactivation. B, BOLD signal associated with EEG-defined
cascades (using a threshold of 2 SD to define the EEG cascades). Results are combined across all
three conditions: continuous rest, task, and intermittent rest. C, Same as B, but with only
continuous rest data. D, Same as B but with CRT task data (significant effect of cascades is only
apparent using the lower threshold, SD " 2; with higher thresholds no voxels survive multiple-
comparison correction. E, Same as B, but with only intermittent rest data.
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• Over-specified inferences about 

functional-anatomical mappings   

• Inflated test statistics                
(Westfall et al. Wellcome Open Research 2017)

• Many free parameters, confusion 

surrounding efficacy

• Which exact task conditions will be 

sensitive to certain patient group? 
(Sprooten et al. Human Brain Mapping 2017)



Neuroadaptive Bayesian optimization Romy Lorenz NIPS Workshop 2017

Overview

1. Motivation
2. The framework
3. Validation study
4. Application 1: Human brain mapping
5. Application 2: Brain stimulation
6. Ongoing work
7. Implications & Discussion

Overview



Neuroadaptive Bayesian optimization Romy Lorenz NIPS Workshop 2017

The framework

Lorenz et al. Trends in Cognitive Sciences 2017

The framework



Neuroadaptive Bayesian optimization Romy Lorenz NIPS Workshop 2017

The framework
“The Automatic Neuroscientist”

CHAPTER 1 | Introduction 
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iv. automatically trades off exploration and exploitation in the search for the optimum, 

v. has “memory” of all available data, encoded in the surrogate model (unlike using only 

the most recent observation as is the case for gradient-based optimization), and  

therefore 

vi. may adequately handle noisy measurements. 

Due to its efficiency, simplicity and versatility Bayesian optimization has emerged as a powerful 

technique that is rapidly transforming a wide range of areas such as robotics (Cully et al., 2015), 

artificial intelligence (Ghahramani, 2015), recommender systems, interactive user interfaces, 

environmental monitoring and sensor networks ((Shahriari et al., 2016) and references therein). 

Within the field of sensory neuroscience, Bayesian optimization has been proposed in animal 

neurophysiology (Lewi et al., 2008; Pillow and Park, 2016) and optogenetics (Shababo et al., 

2013). For application within psychology and cognitive sciences, mainly simulation studies 

(Cavagnaro et al., 2009b, 2013a; Tang et al., 2010) have been carried out; however a few 

empirical studies involved real-time experimentation with humans, investigating memory 

retention  (Cavagnaro et al., 2009a), decision making (Cavagnaro et al., 2013b) and 

psychophysics (Lesmes et al., 2006). These studies however optimized based on behavioural 

responses. To date, no study has yet employed non-parametric Bayesian optimization in 

combination with brain measures derived from functional neuroimaging techniques in humans.  

 
Figure 1.4 | Neuroadaptive Bayesian optimization. (1) The subject is presented with an experimental condition. (2) 
Real-time functional neuroimaging (i.e., real-time fMRI, see Chapter 2) is used acquire brain data. (3) The desired 
brain state to optimize for is analysed in response to this experimental condition. (4) This information is then fed into 
the Bayesian optimization algorithm and based on this, the algorithm chooses an experimental condition closer to the 
maximum of the objective function, hence trying to optimize for the desired target brain state.  

Lorenz et al. NeuroImage 2016
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combination 

Bayesian optimization

Rasmussen & Williams 2006

Brochu et al. arXiv 2010 
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“update 
knowledge”

Gaussian 
process (GP) 

regression

choice of
covariance function

Bayesian optimization

!,! ∈ ℝ!!
!! ∈ ℝ! variance of covariance kernel

! !,! = !! exp − ! − ! !

2!!! !

! ∈ ℝ! length of covariance kernel

audio-visual stimulus

squared exponential kernel:

Rasmussen & Williams 2006

Brochu et al. arXiv 2010 
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Bayesian optimization

“close the 
loop”

Gaussian 
process (GP) 

regression

Propose new 
stimuli 
combination 

choice of 
acquisition function

choice of
covariance function
(squared exponential, 
linear, periodic kernel)

Rasmussen & Williams 2006

Brochu et al. arXiv 2010 

Bayesian optimization

! = ! ! − !!!"#
!"#(!) !

!

q() :
p()	:

cumulative distribution function
probability density function

m(x) :

var(x)	:
predicted mean

predicted variance

fmax : maximum predicted value 

!" ! = ! ! − !!!"# q ! + !"#(!)!(!)!
Expected improvement acquisition function:
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Hampshire et al. Neuron 2012
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Motivation

N-back task

Stroop task

Maths task

Divided attention task

Go/No-Go task

Standard fMRI 
approach

• Limited generalizability
• Limited reproducibility

Lorenz et al. Trends in Cognitive Sciences 2017

Westfall et al. Wellcome Open Research 2017
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Task space based on meta-analysis

Stage 1

Stage 2

Yeo et al. Cerebral Cortex 2015

Study 1 Study 2 Study 3
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Stage 1

Stage 2

Study 1 Study 2 Study 3

Tower of London & Deductive Reasoning tasks maximally dissociate FPNs

Find optimal tasks
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Study 1 Study 2 Study 3

Zoom in task space and fine-tune tasks
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Study 1 Study 2 Study 3

Find optimal task parameters
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Find unique functional profile

Study 1 Study 2 Study 3

dorsal FPN > 3 other FPNs ventral FPN > 3 other FPNs

Tower of London, Deductive Reasoning, Encoding 
& Wisconsin Card Sorting tasks

Go/No-Go, Divided Auditory Attention,                
Passive Listening & Reading tasks
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Summary

• High inter-subject reliability

• Functional profile across many tasks is unique to each 

FPN

• Set of optimal tasks only partially corresponds to meta-

analysis and previous functional labels

• Neurally-derived cognitive taxonomy needed

• Powerful synergy between neuroadaptive Bayesian 
optimization and meta-analyses

Lorenz et al. under revision (bioRxiv:128678)
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Transcranial alternating current stimulation (tACS)

§ Status Quo
- Ad hoc definition of frequency 

and phase
- Cohort testing

§ Limitation
1. How to choose frequency and 

phase?
2. Stimulation parameters may vary 

due to anatomy or pathology

Ines Violante
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Concurrent real-time fMRI/tACS

Lorenz et al. PRNI 2016

Lorenz et al. in preparation

CHAPTER 6 | Towards tailoring non-invasive brain stimulation 
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display in the MR scanner and recorded the reaction time and accuracy of the subject’s 

responses (green arrows). 

 
Figure 6.7 | Setup of closed-loop neuroadaptive Bayesian optimization and tACS. PC1 received whole-brain 
volumes directly from the MR PC and performed real-time fMRI analyses. Information about the seed impact 
measure of the right IPL in response to the current tACS parameters was then provided to the Bayesian optimization 
algorithm that also ran on PC1, that proposed the stimulation parameters to be applied to the subject in the next 
block. Those new stimulation parameters were sent to PC2 that controlled the tACS stimulator via the NI-DAQ  (NI) 
device. PC1 and PC2 were both receiving TR triggers from the MR PC (red arrows), allowing exact temporal 
synchronization between the PCs. In addition, PC1 displayed the stimuli of the switch task to the subject and 
recorded the reaction time and accuracy of the subject’s responses (green arrows). 

Real-time fMRI 

The real-time fMRI pre-processing pipeline used in this study was presented in Chapter 2.  

Neuroadaptive Bayesian optimization 

The Bayesian optimization algorithm employed has been described in detail in Chapter 2. An 

anisotropic squared exponential kernel was employed; hyperparameters of the kernel as well as 

a constant Gaussian noise estimate were tuned based on data of the offline study, using type II 

maximum likelihood (Rasmussen and Williams, 2006). The search through the experiment 

space was guided by the GP-UCB acquisition function (Brochu et al., 2010b); for algorithmic 

details see Chapter 2. The more exploratory GP-UCB acquisition function was selected as the 

primary aim of the study was to efficiently map out the relationship between tACS parameters 

and neural responses across the whole experiment space and because the EI acquisition 

function resulted in very exploitative behaviour in Chapter 5. An initial burn-in of five 

Ines Violante
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CHAPTER 7 | Assessing tACS-induced phosphene perception 
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While tACS-induced phosphene perception has been studied thoroughly under different 

frequency conditions and using different montages; to date, the effect of phase on phosphene 

perception has not been investigated. Yet, more and more studies are emerging that focus on 

studying behaviour and cognition as an effect of phase difference (Guerra et al., 2016; Helfrich 

et al., 2014; Polanía et al., 2012, 2015; Violante et al., 2017).  

However, a practical challenge when aiming to assess phosphene perception for different 

frequencies and phases simultaneously is that it rapidly results in a combinatorial explosion of 

possible experimental conditions. Furthermore, the conventional approach to assess 

phosphene perception typically has subjects judging perceived intensity on a rating scale2  (e.g., 

0-3 (Kanai et al., 2008; Schutter and Hortensius, 2010), 1-4 (Pascual-Leone and Walsh, 2001; 

Silvanto and Cattaneo, 2010), 0-5 (Cabral-Calderin et al., 2016), or 0-10 (Mehta et al., 2015)). 

This is problematic as it relies on judgments about absolute magnitudes; however humans are 

better at making relative judgments (Kahneman and Tversky, 1979; Miller, 1956; Seymour and 

McClure, 2008; Stewart et al., 2005, 2006), expressing preference of one option over another.  

 
Figure 7.1 | Adaptive Bayesian optimization for assessing phosphene perception. (1) The experiment starts by the 
subject receiving two blocks of tACS; each block corresponds to a different tACS frequency-phase combination. (2) 
After both blocks, subjects indicate for which block the phosphene perception was stronger by pressing a button on 
a response box. (3) Based on the subject's choice, the algorithm automatically proposed a new pair of stimulation 
parameters to be applied to the subject in the next iteration. This cycle continues until a stopping criteria is reached 
or the experiment is ended automatically.  

To overcome these limitations, in this chapter I applied a closed-loop Bayesian optimization 

approach to automatically search through an exhaustive tACS parameter space to identify the 

tACS frequency-phase combination that elicited the strongest phosphene perception in 

                                                
2 The standard procedure to assess tACS-induced phosphene perception is to expose participants to the theoretically assumed 
strongest tACS frequency (such as 16 Hz) before the experiment starts, thereby acting as a “reference” for subsequent rating 
blocks. However, this requires for subjects to recall the intensity of the reference phosphene intensity while being exposed to blocks 
of other frequencies. Thus, this procedure is less precise for determining subtle differences in phosphene perception.  

Phosphene perception 

Ines Violante

Lorenz et al. under revision 
(bioRxiv:150086)

§ Phosphenes = flash-like 

percepts during brain 

stimulation 

§ Major experimental 

challenge 

(neuromodulation, 

altertness) 
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perception, Brochu et al. (2010) have proposed a Bayesian optimization approach based on 

discrete preferences. In this approach, participants are presented with two (or more) samples 

from the parameter space at each iteration, for which they simply indicate their preference. This 

requires minimal cognitive burden on the participant while more robust results can be obtained 

than is possible with conventional rating scales (Brochu et al., 2010). By using a Thurstone-

Mosteller model with a GP, it is possible to relate binary observations to a continuous function. 

Figure 3 depicts an example of the 1D parameter space for montage Cz-Oz; it shows how a set 

of preferences is used at each iteration to infer and update a GP model.  

The second stage is the guided search stage, in which an acquisition function is used to 

propose a point in the parameter space from where to sample next (i.e., the tACS parameters 

the subject will receive in the next iteration). This new observation will then be used to update 

the algorithm’s probabilistic surrogate model. The role of the acquisition function is to guide 

exploration of the parameter space for achieving its learning goal (i.e., finding the tACS 

frequency-phase combinations that maximize phosphene intensity) by evaluating the utility of 

each candidate point (Shahriari et al., 2016). As such, the acquisition function must balance a 

trade-off between exploring the parameter space and exploiting the current set of parameters 

for which measurements have already been collected; this allows for an efficient and reliable 

search over an exhaustive parameter space.  

 
Figure 3 | Gaussian process regression based on binary observations. At each iteration (“iter”), subjects indicate their 
preference between two points from the parameter space (i.e., the direction of the arrow represents preference). This 
preference serves as the input to a function that models a GP taking into account all preference ratings given up to 
that point, as well as prior assumptions about the smoothness of the function. It can be seen, that uncertainty (i.e., 
variance around the mean) about the predictions decreases over time as more preference ratings are available.  

Discrete preference GP regression | In order to estimate a GP model relating to preference 

data, we followed an approach proposed by Brochu et al. (2010). From a methodological 

perspective, this approach treats preferential data provided by subjects as a classification task. 

A GP is employed to model the underlying objective function associated with each input. This 

surrogate model serves to capture the preference for each input such that if input i! is preferred 

to input i! the surrogate function at i! should be greater than at i!. In the study presented here, 

the distinct inputs correspond to two distinct tACS frequency-phase combinations. 

.CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/150086doi: bioRxiv preprint first posted online Jun. 14, 2017; 



Neuroadaptive Bayesian optimization Romy Lorenz NIPS Workshop 2017

Overview

1. Motivation
2. The framework
3. Validation study
4. Application 1: Human brain mapping
5. Application 2: Brain stimulation
6. Ongoing work
7. Implications & Discussion

Overview



Neuroadaptive Bayesian optimization Romy Lorenz NIPS Workshop 2017

Adam 
Hampshire

AI-web server to dissect human intelligence

N > 15,000



Neuroadaptive Bayesian optimization Romy Lorenz NIPS Workshop 2017

Overview

1. Motivation
2. The framework
3. Validation study
4. Application 1: Human brain mapping
5. Application 2: Brain stimulation
6. Ongoing work
7. Implications & Discussion

Overview



Neuroadaptive Bayesian optimization Romy Lorenz NIPS Workshop 2017

Implications for improving reproducibility

• Improved specifity &  

generalizability of 

research findings

• Can be combined 

with pre-registration 

Lorenz et al. TiCS 2017

• More flexible 
hypothesis possible 

(exploration)
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Future work – need for method development

§ Addressing small effect sizes

- Hierarchical optimization protocol 

§ Diagnosis: biomarker discovery

- Novel acquisition functions

§ Therapy: tuning to individual patient

- Statistical inference on objective function/sampling trajectory

§ General:

- Sopping criteria

- Non-stationarity in time (habituation)
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Resources

• Code
- GP regression: http://github.com/SheffieldML/GPy

- Acquisition functions: http://github.com/romylorenz/AcquisitionFunction

• Publications
Lorenz R, Hampshire A, Leech R (2017). Neuroadaptive Bayesian optimization and hypothesis testing. Trends in 

Cognitive Sciences, 21(3): 155-167

Lorenz R, Monti RP, Violante IR, Anagnostopoulos C, Faisal AA, Montana G, Leech R (2016a). The Automatic 
Neuroscientist: A framework for optimizing experimental design with closed-loop real-time fMRI. 
NeuroImage, 129: 320-334

Lorenz R, Violante IR, Monti RP, Montana G, Hampshire A, Leech R. Dissociating frontoparietal networks with 
neuroadaptive Bayesian optimization. Under revision (preprint available on bioRxiv:128678)

Lorenz R*, Monti RP*, Hampshire A, Koush Y, Anagnostopoulos C, Faisal A, Sharp D, Montana G, Leech R, Violante IR 

(2016b. Towards tailoring non-invasive brain stimulation using real-time fMRI and Bayesian optimization), 

In 6th International Workshop on Pattern Recognition in Neuroimaging (free version available on 

arXiv:1605.01270)

Lorenz R, Simmons L, Monti RP, Arthur J, Limal S, Leech R, Violante IR. Assessing tACS-induced phosphene 
perception using adaptive Bayesian optimization. Under revision (preprint available on bioRxiv: 150086)

Lorenz R, Monti RP, Koush Y, Sharp D, Montana G, Hampshire A, Leech R, Violante IR. Towards tailoring non-
invasive stimulation using neuroadaptive Bayesian optimization. In preparation.

general
brain stim

ulation
cognition

Questions/Feedback?

lorenz.romy@gmail.com

@romy_lorenz


