Imperial College London

C³NL

Neuroadaptive Bayesian Optimization

Implications for the Cognitive Sciences

Romy Lorenz

Postdoctoral Research Fellow Cognitive, Clinical and Computational Neuroimaging Lab Imperial College London

- 1. Motivation
- 2. The framework
- 3. Validation study
- 4. Application 1: Human brain mapping
- 5. Application 2: Brain stimulation
- 6. Ongoing work
- 7. Implications & Discussion

1. Motivation

- 2. The framework
- 3. Validation study
- 4. Application 1: Human brain mapping
- 5. Application 2: Brain stimulation
- 6. Ongoing work
- 7. Implications & Discussion

Reproducibility crisis

HOW MUCH PUBLISHED WORK IN YOUR FIELD IS REPRODUCIBLE?

Physicists and chemists were most confident in the literature.

HAVE YOU FAILED TO REPRODUCE AN EXPERIMENT?

Most scientists have experienced failure to reproduce results.

Reproducibility crisis

Neuroadaptive Bayesian optimization

Romy Lorenz

NIPS Workshop 2017

Reproducibility crisis in Cognitive Sciences

- Cognitive biases
 - IKEA-effect
 - Texas sharp-shooter effect
- Bad research practices
 - P-hacking
 - HARKing
 - File-drawer effect
- Limitations of methodology
 - Underpowered studies
 - "Narrow" experimental designs

Reproducibility crisis in Cognitive Sciences

- Cognitive biases
 - IKEA-effect
 - Texas sharp-shooter effect
- Bad research practices
 - P-hacking
 - HARKing
 - File-drawer effect
- Limitations of methodology
 - Underpowered studies
 - "Narrow" experimental designs

Aims of cognitive neuroscience

Research questions

What are the fundamental aspects of cognition?

What are the fundamental roles of distinct networks in the brain?

How can cognitive processes be modulated or enhanced?

Standard approach

Neuroadaptive Bayesian optimization

narrow

Aims of cognitive neuroscience

Human-brain mapping

- Over-specified inferences about functional-anatomical mappings
- Inflated test statistics (Westfall et al. *Wellcome Open Research* 2017)

Biomarker discovery

• Which exact task conditions will be sensitive to certain patient group? (Sprooten et al. *Human Brain Mapping* 2017)

Non-invasive brain stimulation

 Many free parameters, confusion surrounding efficacy

narrow

- 1. Motivation
- 2. The framework
- 3. Validation study
- 4. Application 1: Human brain mapping
- 5. Application 2: Brain stimulation
- 6. Ongoing work
- 7. Implications & Discussion

The framework

Lorenz et al. Trends in Cognitive Sciences 2017

"The Automatic Neuroscientist"

- 1. Motivation
- 2. The framework
- 3. Validation study
- 4. Application 1: Human brain mapping
- 5. Application 2: Brain stimulation
- 6. Ongoing work
- 7. Implications & Discussion

Target brain state

lateral occipital cortex activity 1

superior temporal cortex activity Ψ

masks derived from Braga et al. *NeuroImage* 2013

Neuroadaptive Bayesian optimization

Romy Lorenz

NIPS Workshop 2017

Experiment space

Bayesian optimization

Rasmussen & Williams 2006 Brochu et al. *arXiv* 2010

Bayesian optimization

Rasmussen & Williams 2006 Brochu et al. *arXiv* 2010

Bayesian optimization

Expected improvement acquisition function:

 $EI(x) = (m(x) - f_{max})q(z) + var(x)p(z)$

m(x): predicted mean

- var(x): predicted variance
- f_{max} : maximum predicted value
- q_{O} : cumulative distribution function
- p_O : probability density function

 $z = \frac{m(x) - f_{max}}{var(x)}$

Rasmussen & Williams 2006 Brochu et al. *arXiv* 2010 Results

Lorenz et al. NeuroImage 2016

- 1. Motivation
- 2. The framework
- 3. Validation study

4. Application 1: Human brain mapping

- 5. Application 2: Brain stimulation
- 6. Ongoing work
- 7. Implications & Discussion

Motivation

Duncan & Owen *TiNS* 2000 Fedorenko et al. *PNAS* 2013

Neuroadaptive Bayesian optimization

Motivation

Hampshire et al. Neuron 2012

Neuroadaptive Bayesian optimization

Romy Lorenz

NIPS Workshop 2017

Motivation

- Limited generalizability
- Limited reproducibility

Lorenz et al. *Trends in Cognitive Sciences* 2017 Westfall et al. *Wellcome Open Research* 2017

Searching across cognitive tasks

Task space based on meta-analysis

Yeo et al. Cerebral Cortex 2015

Neuroadaptive Bayesian optimization

Find optimal tasks

Tower of London & Deductive Reasoning tasks maximally dissociate FPNs

Neuroadaptive Bayesian optimization

Zoom in task space and fine-tune tasks

Neuroadaptive Bayesian optimization

Find optimal task parameters

Deductive Reasoning

Tower of London

Find *unique* functional profile

& Wisconsin Card Sorting tasks

Passive Listening & Reading tasks

Neuroadaptive Bayesian optimization

- High inter-subject reliability
- Functional profile across many tasks is unique to each FPN
- Set of optimal tasks only partially corresponds to metaanalysis and previous functional labels
- Neurally-derived cognitive taxonomy needed
- Powerful synergy between neuroadaptive Bayesian optimization and meta-analyses

Lorenz et al. under revision (bioRxiv:128678)

- 1. Motivation
- 2. The framework
- 3. Validation study
- 4. Application 1: Human brain mapping
- 5. Application 2: Brain stimulation
- 6. Ongoing work
- 7. Implications & Discussion

Transcranial alternating current stimulation (tACS)

- Status Quo
 - Ad hoc definition of frequency and phase
 - Cohort testing

Limitation

- 1. How to choose frequency and phase?
- 2. Stimulation parameters may vary due to anatomy or pathology

Concurrent real-time fMRI/tACS

Lorenz et al. *PRNI* 2016 Lorenz et al. *in preparation*

Phosphene perception

- Phosphenes = flash-like percepts during brain stimulation
- Major experimental challenge (neuromodulation, altertness)

Neuroadaptive Bayesian optimization

47

86

iter: 01

Gaussian Process

0

8 14 26

Frequency

4

- 1. Motivation
- 2. The framework
- 3. Validation study
- 4. Application 1: Human brain mapping
- 5. Application 2: Brain stimulation

6. Ongoing work

7. Implications & Discussion

COGNITRON Al-web server to dissect human intelligence

Adam Hampshire

N > 15,000

- 1. Motivation
- 2. The framework
- 3. Validation study
- 4. Application 1: Human brain mapping
- 5. Application 2: Brain stimulation
- 6. Ongoing work
- 7. Implications & Discussion

Implications for improving reproducibility

- More flexible hypothesis possible (exploration)
- Improved specifity & generalizability of research findings
- Can be combined with pre-registration

Lorenz et al. TiCS 2017

Future work – need for method development

- Addressing small effect sizes
 - Hierarchical optimization protocol
- Diagnosis: biomarker discovery
 - Novel acquisition functions
- Therapy: tuning to individual patient
 - Statistical inference on objective function/sampling trajectory
- General:
 - Sopping criteria
 - Non-stationarity in time (habituation)

Acknowledgement

Funding

Engineering and Physical Sciences Research Council

Imperial Biomedical Research Centre

Imperial College London Cognitive

Cognitive, Clinical and Computational Neuroimaging Laboratory C³NL Robert Leech Adam Hampshire Ines R. Violante

Left Gatsby Computational Neuroscience Unit

Ricardo P. Monti

Rob

Adam

Ines

Ricardo

Neuroadaptive Bayesian optimization

Romy Lorenz

NIPS Workshop 2017

Questions/Feedback?

Iorenz.romy@gmail.com@romy_lorenz

Code

- GP regression: <u>http://github.com/SheffieldML/GPy</u>
- Acquisition functions: <u>http://github.com/romylorenz/AcquisitionFunction</u>

Publications

- Lorenz R, Monti RP, Violante IR, Anagnostopoulos C, Faisal AA, Montana G, Leech R (2016a). **The Automatic Neuroscientist: A framework for optimizing experimental design with closed-loop real-time fMRI**. *NeuroImage*, 129: 320-334
- Lorenz R, Violante IR, Monti RP, Montana G, Hampshire A, Leech R. **Dissociating frontoparietal networks with neuroadaptive Bayesian optimization**. *Under revision* (preprint available on bioRxiv:**128678**)
- Lorenz R*, Monti RP*, Hampshire A, Koush Y, Anagnostopoulos C, Faisal A, Sharp D, Montana G, Leech R, Violante IR (2016b. Towards tailoring non-invasive brain stimulation using real-time fMRI and Bayesian optimization), In 6th International Workshop on Pattern Recognition in Neuroimaging (free version available on arXiv:1605.01270)
- Lorenz R, Simmons L, Monti RP, Arthur J, Limal S, Leech R, Violante IR. **Assessing tACS-induced phosphene** perception using adaptive Bayesian optimization. *Under revision* (preprint available on bioRxiv: **150086**)
- Lorenz R, Monti RP, Koush Y, Sharp D, Montana G, Hampshire A, Leech R, Violante IR. **Towards tailoring noninvasive stimulation using neuroadaptive Bayesian optimization**. *In preparation.*

Lorenz R, Hampshire A, Leech R (2017). **Neuroadaptive Bayesian optimization and hypothesis testing**. *Trends in Cognitive Sciences*, 21(3): 155-167