
Scaling Bayesian Optimization
in High Dimensions

Stefanie Jegelka, MIT  
BayesOpt Workshop 2017 

 
joint work with Zi Wang, Chengtao Li, Clement Gehring (MIT)  

and Pushmeet Kohli (DeepMind)

Bayesian Optimization with GPs

BO: sequentially build model of f 
for t=1, … T:

• select new query point(s) x 

• observe f(x)

• update model & repeat 

f(x)

2 Automatic Gait Optimization

Figure 1: The bio-inspired dynamical
bipedal walker Fox used for the exper-
imental evaluation.

The search for appropriate parameters of a controller can
be formulated as an optimization problem, such as the min-
imization

minimize
✓2RD

f (✓) (1)

of an objective function f (·) with respect to the parame-
ters ✓. In the context of gait optimization, this optimization
problem is characterized as a global optimization of a zero-
order stochastic objective function. Therefore, the use of
Bayesian optimization well suits this challenging optimiza-
tion task.

Bayesian Optimization Bayesian optimization is an iter-
ative model-based global optimization method [7, 5, 11, 1].
In Bayesian optimization, for each iteration (i.e., evalua-
tion of the objective function f), a GP model ✓ 7! f (✓)
is learned from the data set T = {✓, f (✓)} composed
by the past parameters ✓ and the corresponding measure-
ments f (✓) of the objective function. This model is used
to predict the response surface ˆf and the corresponding ac-
quisition surface ↵ (✓)1, once the response surface ˆf (·) is mapped through the acquisition func-
tion ↵ (·). Using a global optimizer, the minimum ✓⇤ of the acquisition surface ↵ (✓) is computed
without any evaluation of the objective function, e.g., no robot interaction. The current minimum ✓⇤

is evaluated on the robot and, together with the resulting measurement f (✓⇤
), added to the datasetT.

Gaussian Process Model for Objective Function To create the model that maps ✓ 7! f(✓), we
make use of Bayesian non-parametric Gaussian Process regression [12]. Such a GP is a distribution
over functions

f(✓) ⇠ GP (mf , k(✓p,✓q)) , (2)
fully defined by a prior mean mf and a covariance function k(✓p,✓q). As prior mean, we choose
mf ⌘ 0, while the chosen covariance function k(✓p,✓q) is the squared exponential with automatic
relevance determination and Gaussian noise

k(✓p,✓q) = �2
f exp(�1

2 (✓p�✓q)
T⇤�1

(✓p�✓q))+�2
w�pq (3)

with ⇤ = diag([l21, ..., l
2
D]). Here, li are the characteristic length-scales, �2

f is the variance of
the latent function f(·) and �2

w the noise variance. A practical issue, for both GP modeling and
Bayesian optimization, is the choice of the hyperparameters of the GP model, such as the charac-
teristic length-scales li, the variance of the latent function �2

f and the noise variance �2
w. In gait

optimization, these hyperparameters are often fixed a priori [9]. There are suggestions [8] that fixing
the hyperparameters can considerably speed up the convergence of Bayesian optimization. However,
manually choosing the value of the hyperparameters requires extensive expert knowledge about the
system that we want to optimize, which is often an unrealistic assumption. An alternative common
approach is to automatically select the hyper-parameters by optimizing with respect to the marginal
likelihood [12].

Acquisition Function A number of acquisition functions ↵ (·) exist, such as Probability of Im-
provement [7], Expected Improvement [10], Upper Confidence Bound [3] and Entropy-Based Im-
provements [4]. Experimental results [4] suggest that Expected Improvement on specific families
of artificial functions performs better on average than Probability of Improvement and Upper Con-
fidence Bound. However, these results do not necessarily hold true for real-world problems such
as gait optimization, where the objective functions are more complex to model. Both Probability
of improvement [9] and Expected Improvement [14] have been previously employed in gait opti-
mization. In our experiments, we evaluate Probability of Improvement, Expected Improvement and
Upper Confidence Bound.

1The correct notation would be ↵
�
f̂ (✓)

�
, but we use ↵ (✓) for notational convenience.

2

μ −1

σ −1

Gaussian process:
closed form expressions for
posterior mean and  
variance (uncertainty)

f ⇠ GP (µ, k)

argmax

x2X
↵

t

(x)

selection criterion: acquisition function

Challenges in high dimensions
statistical & computational complexity:  

• estimating & optimizing acquisition function  
new, sample-efficient acquisition function (ICML 2017)

• function estimation in high dimensions 
learn input structure (ICML 2017)

• many observations (data points): huge matrix in GP 
multiple random partitions (BayesOpt 2017)

• parallelization

μ −1

σ −1

new query point:

x

⇤if is high-dimensional: costly to estimate!↵t(x)

(Predictive) Entropy Search

= H (p(x⇤ | Dt))� E [H(p(x⇤ | Dt [{x, y}))]

= H(p(y | Dt, x))� E [H(p(y | Dt, x, x⇤))]

ES

PES

(Hennig & Schuler, 2012; Hernandez-Lobato, Hoffman & Ghahramani 2014)

I(a; b) = H(a)�H(a|b)
= H(b)�H(b|a)

argmax

x2X
↵

t

(x)

X
↵t(x) = I({x, y};x⇤ | Dt)

Observed
DataPoint to query

Location
of global
optimum

x⇤

Max-value Entropy Search

↵t(x) = I({x, y};x⇤ | Dt)

⇡ 1

K

X

y⇤2Y⇤

�y⇤(x) (�y⇤(x))

2 (�y⇤(x))
� log((�y⇤(x)))

�
closed-form

Query Point
Observed

Data

d-dimensional

Expectation over .p(y⇤|Dt) How sample ?y⇤

↵t(x) = I({x; y}; y⇤ | Dt)

 dimensions!d ! 1 X
x⇤

1-dimensional

Input space

Output space

Sampling y*: Idea 1
 is a 1D Gaussian  
 
 
 
 
 
 

• sample representative points 

• approximate max-value of the representative points by a
Gumbel distribution

p(f(x))

Fisher-Tippett-Gnedenko Theorem
The maximum of a set of i.i.d. Gaussian
variables is asymptotically described by
a Gumbel distribution.

Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

y(
x)

x

Figure: Examples include WiFi localization, C14 callibration curve.

f
(x
)

x

Sampling y*: Idea 2
draw functions from GP posterior  
and maximize each. How?  
 
 
 
 
 

• approximate GP as finite neural network  
(random features)  
& sample posterior weights

• maximize network output for each sample

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

2.2 Function-space View 15

−5 0 5

−2

−1

0

1

2

input, x

ou
tp

ut
, f

(x
)

−5 0 5

−2

−1

0

1

2

input, x

ou
tp

ut
, f

(x
)

(a), prior (b), posterior

Figure 2.2: Panel (a) shows three functions drawn at random from a GP prior;
the dots indicate values of y actually generated; the two other functions have (less
correctly) been drawn as lines by joining a large number of evaluated points. Panel (b)
shows three random functions drawn from the posterior, i.e. the prior conditioned on
the five noise free observations indicated. In both plots the shaded area represents the
pointwise mean plus and minus two times the standard deviation for each input value
(corresponding to the 95% confidence region), for the prior and posterior respectively.

which informally can be thought of as roughly the distance you have to move in
input space before the function value can change significantly, see section 4.2.1.
For eq. (2.16) the characteristic length-scale is around one unit. By replacing
|xp�xq| by |xp�xq|/` in eq. (2.16) for some positive constant ` we could change
the characteristic length-scale of the process. Also, the overall variance of the magnitude

random function can be controlled by a positive pre-factor before the exp in
eq. (2.16). We will discuss more about how such factors a↵ect the predictions
in section 2.3, and say more about how to set such scale parameters in chapter
5.

Prediction with Noise-free Observations

We are usually not primarily interested in drawing random functions from the
prior, but want to incorporate the knowledge that the training data provides
about the function. Initially, we will consider the simple special case where the
observations are noise free, that is we know {(xi, fi)|i = 1, . . . , n}. The joint joint prior

distribution of the training outputs, f , and the test outputs f⇤ according to the
prior is

f
f⇤

�

⇠ N
✓

0,

K(X, X) K(X, X⇤)
K(X⇤, X) K(X⇤, X⇤)

�◆

. (2.18)

If there are n training points and n⇤ test points then K(X, X⇤) denotes the
n ⇥ n⇤ matrix of the covariances evaluated at all pairs of training and test
points, and similarly for the other entries K(X, X), K(X⇤, X⇤) and K(X⇤, X).
To get the posterior distribution over functions we need to restrict this joint
prior distribution to contain only those functions which agree with the observed
data points. Graphically in Figure 2.2 you may think of generating functions
from the prior, and rejecting the ones that disagree with the observations, al- graphical rejection

(Hernández-Lobato, Hoffman & Ghahramani 2014)

……

x

f(x)

random weights

Neal 1994:  
GP infinite 1-layer neural
network with Gaussian weights.

⌘

Max-value Entropy Search

↵t(x) = I({x, y};x⇤ | Dt)

Query Point
Observed

Data

d-dimensional

Expectation over .p(y⇤|Dt) Can sample ! y⇤

↵t(x) = I({x; y}; y⇤ | Dt)

 dimensions!d ! 1 X
x⇤

1-dimensional

Input space

Output space

Does it work?

Empirically: max-value enough? sample-efficiency?
Si

m
pl

e
R

eg
re

t

0

1

2

3

4

Iteration
1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

PES 1

PES 10
PES 100

MES-G 1
MES-G 10 MES-G 100

sampling x

⇤

sampling y⇤

Empirically: faster than PES
Runtime Per Iteration (s)

0

4

8

12

16

PES MES-NN MES-Gumbel
0.12

5.85

15.24

0.090.67
1.61

0.090.130.2

1 10 100 samples

zoo of acquisition functions: EI (Mockus, 1974), PI (Kushner, 1964), GP-UCB (Auer, 2002; Srinivas et
al., 2010), GP-MI (Contal et al., 2014), ES (Hennig & Schuler, 2012), PES (Hernández-Lobato et al., 2014), EST (Wang
et al., 2016), GLASSES (González et al., 2016), SMAC (Hutter et al., 2010), ROAR (Hutter et al., 2010), … MES 

Lemma (Wang-J17) Equivalent acquisition functions:

• MES with a single sample of per step

• UCB (upper confidence bound, Srinivas et al., 2010)

• PI (probability of improvement, Kushner, 1964)  

Theorem: Regret bound (Wang-J 17) 
With probability , within iterations:  

Connections & Theory

y⇤
with specific,  
adaptive  
parameter  
setting
}

1� � T 0
= O(T log �)

f⇤ � max

t2[1,T 0
]

f(xt) = O
�q

(log T)

d+2

T

�

Gaussian Processes in high dimensions

• estimating a nonlinear function in  
high input dimensions:  
statistically challenging 

• optimizing nonconvex acquisition 
function in high dimensions 
computationally challenging 

• many observations: huge matrices 
computationally challenging

Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

y(
x)

x

Figure: Examples include WiFi localization, C14 callibration curve.

Additive Gaussian Processes

• lower-complexity functions 
statistical efficiency

• optimize acquisition function block-wise  
computational efficiency

f(x) =
X

m2[M]

fm(xAm).

(Hastie&Tibshirani, 1990; Kandasamy et al., 2015)

f1(x
A1)

f0(x
A0)

f2(x
A2)

What is the partition?

Integrate 
out

Structural Kernel Learning

f1(x
A1)

f0(x
A0)

f2(x
A2)

f = + +f0 f1 f2

0 1 0 0 1 1 1 0 2

z = [0 1 0 0 1 1 1 0 2]  
Learn the assignment!

Key idea:
Dirichlet prior on z

zj ⇠ Multi(✓)

Posterior 

 
via Gibbs sampling.  
easy updates

p(z | Dn;↵)

t
100 200 300 400 500

r t

2

3

4

5

6

7

8

9

10
robot pushing task

Empirical Results

t

200 400

r t

-0.2

0

0.2

0.4

0.6

0.8
D=2

Known

NP

FP

PL-1

PL-2

Gibbs

t

200 400

r t

0

10

20

30

40
D=10

t

200 400

r t

0

10

20

30

40

50

60
D=20

t

200 400 600

r t

0

20

40

60

80

100

120
D=50

t

200 400

R
t

0

0.2

0.4

0.6

0.8

1
D=2

t

200 400

R
t

5

10

15

20

25

30

35
D=10

t

200 400

R
t

10

20

30

40

50

60
D=20

t

200 400 600

R
t

20

40

60

80

100

120
D=50

(a) (b) (c) (d)

(e) (f) (g) (h)

True

No Partition

Fully Partitioned

SKL

Heuristics

Iteration

Si
m

pl
e

R
eg

re
t

1

0.5

x
1

00

0.5

x
2

0

5

-5

10

1

f(
m
) (
x
)

synthetic, 50 dim

Curious connections
• crossover in evolutionary algorithms:

• BO with additive GP:  
 
 
 
 
 
 
 

• observed good points: query points:  

learned instead of completely random coordinate partition

0.5
0.1
0.3

0.9
0.8
0.5

0.5
0.8
0.3

-2 0 2 4
-2

-1

0

1

2

3

4

-2 0 2 4
-2

-1

0

1

2

3

4

-2 0 2 4
-2

-1

0

1

2

3

4

-2 0 2 4
-2

-1

0

1

2

3

4

1 observation 3 observations
(a) (b) (c) (d)estimated acquisition function

-1
0

2
2

-1
2

2
0

Gaussian Processes in high dimensions

• estimating nonlinear functions in  
high input dimensions:  
statistically challenging

• optimizing nonconvex acquisition 
function in high dimensions 
computationally challenging 

• many observations: huge matrix inversions 
computationally challenging

Gaussian Process Regression

-3

-2

-1

0

1

2

3

-2 -1 0 1 2

y(
x)

x

Figure: Examples include WiFi localization, C14 callibration curve.

µ(x) = kn(x)
>(Kn + ⌧

2I)�1yt

�

2(x) = k(x, x)� kn(x)
>(Kn + ⌧

2I)�1kn(x)

x
0 0.5 1

f(x
)

-10

-5

0

5

10

3σ
µ
f

x
0 0.5 1

f(x
)

-150

-100

-50

0

50

3σ
µ
f

x
0 0.5 1

f(x
)

-10

-5

0

5

10

3σ
µ
f

x
0 0.5 1

f(x
)

-20

0

20

3σ
µ
f

(a) (b) (c) (d)

Full kernel

x
0 0.5 1

f(x
)

-10

-5

0

5

10

3σ
µ
f

x
0 0.5 1

f(x
)

-150

-100

-50

0

50

3σ
µ
f

x
0 0.5 1

f(x
)

-10

-5

0

5

10

3σ
µ
f

x
0 0.5 1

f(x
)

-20

0

20

3σ
µ
f

(a) (b) (c) (d)

Low-rank approximation

Ensemble Bayesian Optimization
in each iteration:

• partition data via 
Mondrian process

• fit GP in each part:  
structure learning + 
Tile Coding;  
synchronize

• select query points in
parallel & filter

parallelization across parts
distribution over partitions — new draw in each iteration

Does it scale?

0 10k 20k 30k 40k 50k
Observat ion size

0

20

40

60

80

100

120

140

160
G

ib
bs

 s
am

pl
in

g
ti

m
e

(m
in

ut
es

)

SKL
EBO

We stopped SKL after 2 hours

EBO average runtime = 61 seconds

Variances

0 0.5 1
x

-10

-5

0

5

10

f(x
)

3

f

0 0.5 1
x

-150

-100

-50

0

50

100

f(x
)

3

f

0 0.5 1
x

-10

-5

0

5

10

f(x
)

3

f

0 0.5 1
x

-60

-40

-20

0

20

40

f(x
)

3

f

Ground Truth5000 Observations1000 Observations100 Observations

0 0.5 1
x

-10

-5

0

5

10

f(x
)

3

f

0 0.5 1
x

-10

-5

0

5

10

f(x
)

3

f

0 0.5 1
x

-10

-5

0

5

10

f(x
)

3

f

0 0.5 1
x

-10

-5

0

5

10

f(x
)

3

f

5000 Observations5000 Observations5000 Observations 5000 Observations

Empirical Results

0 10 20 30 40 50 60
Tim e (m inutes)

0

1

2

3

4

5

6

7
R

e
g

re
t

BO-SVI
BO-Add-SVI

PBO
EBO

(Hensman et al., 2013, Wang et al., 2017)

Summary: GP-BO in high dimensions

Challenge: high dimensions, many observations 
statistical & computational efficiency

• Max-value Entropy Search  
sample-efficient, effective acquisition function  
(Wang, Jegelka, ICML 2017)

• Many dimensions: learning structured kernels  
(Wang, Li, Jegelka, Kohli, ICML 2017)

• Many observations & dimensions & parallelization:
ensemble Bayesian Optimization  
(Wang, Gehring, Kohli, Jegelka, BayesOpt 2017) 

References
• Zi Wang, Stefanie Jegelka. Max-value entropy search for

efficient Bayesian Optimization. ICML 2017.  

• Zi Wang, Chengtao Li, Stefanie Jegelka, Pushmeet Kohli.
Batched High-dimensional Bayesian Optimization via
Structural Kernel Learning. ICML 2017.

• Zi Wang, Clement Gehring, Pushmeet Kohli, Stefanie
Jegelka. Batched Large-scale Bayesian Optimization in
High-dimensional Spaces. BayesOpt, 2017.

