

Scaling Bayesian Optimization in High Dimensions

Stefanie Jegelka, MIT BayesOpt Workshop 2017

joint work with Zi Wang, Chengtao Li, Clement Gehring (MIT) and Pushmeet Kohli (DeepMind)

Bayesian Optimization with GPs

BO: sequentially build model of f for t = 1, ..., T:

- select new query point(s) x selection criterion: acquisition function $\arg\max_{x\in\mathfrak{X}} \alpha_t(x)$
- observe f(x)
- update model & repeat

Gaussian process:

t = 0.06 eec

closed form expressions for posterior mean and variance (uncertainty)

 $f \sim GP(\mu, k)$ **O** t–1

Challenges in high dimensions

statistical & computational complexity:

- estimating & optimizing acquisition function
- function estimation in high dimensions
- many observations (data points): huge matrix in GP
- parallelization

(Predictive) Entropy Search

 $= H (p(x_* | D_t)) - \mathbb{E} [H(p(x_* | D_t \cup \{x, y\}))] \quad \text{ES} \quad I(a; b) = H(a) - H(a|b)$ $= H(p(y | D_t, x)) - \mathbb{E} [H(p(y | D_t, x, x_*))] \quad \text{PES} \quad = H(b) - H(b|a)$

if x^* is high-dimensional: $\alpha_t(x)$ costly to estimate!

(Hennig & Schuler, 2012; Hernandez-Lobato, Hoffman & Ghahramani 2014)

Max-value Entropy Search

I-dimensional

d-dimensional

 x_*

Expectation over $p(y_*|D_t)$. How sample y_* ?

Sampling y*: Idea I

- sample representative points
- approximate max-value of the representative points by a Gumbel distribution

Sampling y*: Idea 2

draw functions from GP posterior and maximize each. How?

Neal 1994: $GP \equiv infinite I$ -layer neural network with Gaussian weights.

- approximate GP as finite neural network (random features)
 & sample posterior weights
- maximize network output for each sample

(Hernández-Lobato, Hoffman & Ghahramani 2014)

Max-value Entropy Search

 x_*

d-dimensional

Expectation over $p(y_*|D_t)$. Can sample $y_*!$

Does it work?

Empirically: max-value enough? sample-efficiency?

Empirically: faster than PES

Runtime Per Iteration (s)

Connections & Theory

ZOO of acquisition functions: EI (Mockus, 1974), **PI** (Kushner, 1964), **GP-UCB** (Auer, 2002; Srinivas et al., 2010), **GP-MI** (Contal et al., 2014), **ES** (Hennig & Schuler, 2012), **PES** (Hernández-Lobato et al., 2014), **EST** (Wang et al., 2016), **GLASSES** (González et al., 2016), **SMAC** (Hutter et al., 2010), **ROAR** (Hutter et al., 2010), ... **MES**

Lemma (Wang-J17) **Equivalent** acquisition functions:

- MES with a single sample of y_* per step
- UCB (upper confidence bound, Srinivas et al., 2010)
- **PI (probability of improvement,** Kushner, 1964)

with specific, adaptive parameter setting

Theorem: Regret bound (Wang-J 17) With probability $1 - \delta$, within $T' = O(T \log \delta)$ iterations: $f^* - \max_{t \in [1,T']} f(x_t) = O(\sqrt{\frac{(\log T)^{d+2}}{T}})$

Gaussian Processes in high dimensions

- estimating a nonlinear function in high input dimensions:
 statistically challenging
- optimizing nonconvex acquisition function in high dimensions computationally challenging
- many observations: huge matrices computationally challenging

Additive Gaussian Processes

$$f(x) = \sum_{m \in [M]} f_m(x^{A_m})$$

- lower-complexity functions statistical efficiency
- optimize acquisition function block-wise computational efficiency

What is the partition?

(Hastie&Tibshirani, 1990; Kandasamy et al., 2015)

Structural Kernel Learning

z = [0 | 0 0 | | 0 2] Learn the assignment!

Key idea: Dirichlet prior on z

Posterior

$$p(z \mid D_n; \alpha)$$

via Gibbs sampling.

easy updates

Curious connections

- crossover in evolutionary algorithms:
- BO with additive GP:

learned instead of completely random coordinate partition

Gaussian Processes in high dimensions

- estimating nonlinear functions in high input dimensions: statistically challenging
- optimizing nonconvex acquisition function in high dimensions computationally challenging

 many observations: huge matrix inversions computationally challenging

$$\mu(x) = \mathbf{k}_n(x)^\top (\mathbf{K}_n + \tau^2 \mathbf{I})^{-1} \mathbf{y}_t$$

$$\sigma^2(x) = k(x, x) - \mathbf{k}_n(x)^\top (\mathbf{K}_n + \tau^2 \mathbf{I})^{-1} \mathbf{k}_n(x)$$

Ensemble Bayesian Optimization

in each iteration:

- partition data via Mondrian process
- fit GP in each part: structure learning + Tile Coding; synchronize
- select query points in parallel & filter

parallelization across parts distribution over partitions — new draw in each iteration

Does it scale?

Variances

Empirical Results

(Hensman et al., 2013, Wang et al., 2017)

Summary: GP-BO in high dimensions

Challenge: high dimensions, many observations statistical & computational efficiency

- Max-value Entropy Search sample-efficient, effective acquisition function (Wang, Jegelka, ICML 2017)
- Many dimensions: learning structured kernels (Wang, Li, Jegelka, Kohli, ICML 2017)
- Many observations & dimensions & parallelization: ensemble Bayesian Optimization (Wang, Gehring, Kohli, Jegelka, BayesOpt 2017)

References

- Zi Wang, Stefanie Jegelka. Max-value entropy search for efficient Bayesian Optimization. ICML 2017.
- Zi Wang, Chengtao Li, Stefanie Jegelka, Pushmeet Kohli.
 Batched High-dimensional Bayesian Optimization via Structural Kernel Learning. ICML 2017.
- Zi Wang, Clement Gehring, Pushmeet Kohli, Stefanie Jegelka. Batched Large-scale Bayesian Optimization in High-dimensional Spaces. BayesOpt, 2017.