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Abstract

We propose new hierarchical models and estimation techniques to solve the prob-
lem of heteroscedasticity in Bayesian optimisation. Our results demonstrate sub-
stantial gains in a wide range of applications, including automatic machine learn-
ing and mining exploration.

1 Introduction

The goal of Bayesian optimisation is to find the global optimum x* = argmax, . » f(x) of a black-
box function f(-) : X ~ R over an index set X C RY. Bayesian optimisation may be understood
in the setting of sequential decision making, whereby at the ¢-th decision round, we select an input
x; € X and observe the value of the black-box reward function f(x;). The returned value y; may
be deterministic, y; = f(x¢), or stochastic, y; = f(x:) + €, where €; is a noise process.

Since the function is unknown, we use a Bayesian prior model to encode our beliefs about its smooth-
ness, and an observation model to describe the data D; = {x1.t,y1.:} up to the ¢-th round. Using
these two models and the rules of probability, we derive a posterior distribution p(f(-)|D;) that can
in turn be used to build an acquisition function to decide the next input query x;;. The acqui-
sition function trades-off exploitation and exploration in the search process. For a comprehensive
introduction of Bayesian optimization, please refer to [II, II].

Most functions encountered in practice, specially in automatic algorithm configuration, tend to be
heteroscedastic. Snoek et al. [B] addressed this fundamental problem using input warped Gaussian
processes. In this work, we introduce more flexible prior models for dealing with heteroscedasticity.
In particular, we adopt trees with (warped) Gaussian process leaves. We explain how to construct
these trees properly so as to avoid variance explosion near split points. We also introduce a hier-
archical approach for estimating the hyper-parameters so as to address situations in which only a
few points are observed at each leaf. All these methodological improvements, when combined, re-
sult in improved empirical performance in a wide range of applications to algorithm configuration
and geophysics. The treed approach is particularly relevant to the latter application, where abrupt
discontinuities arise.

2 Background and Related Work

2.1 Bayesian optimisation with Gaussian processes

Gaussian processes (GPs) are popular priors for Bayesian optimisation as they offer a simple and
flexible way to capture our beliefs about the behaviour of the function; we refer the reader to [4]
for details on these stochastic processes. These priors are defined by a mean function m(-) and a
covariance kernel &(-, ) on the index sets X and X ® X. Given any collection of inputs x1.;, the
outputs are jointly Gaussian: f(x1.¢)[0 ~ N (m(xy.), K?(x1.¢,%1.t)), where m(x;.); = m(x;)
is the i-th entry of the mean vector and K%(x1.,x1.4);j = k%(xi,%;) is the ij-th entry of the



covariance matrix parametrised by 6. For convenience, we assume a zero-mean prior. The choice
of covariance function is important as it governs the smoothness of the function. We adopt the
Matérn(5/2) kernel with automatic relevance determination.

Given the observations D; = {x1.¢, y1.+}, where y; = f(x¢) + €, the posterior predictive distribu-
tion of any evaluation point x is marginally Gaussian f(x)|D;, 0 ~ N (us(x;0), 04(x; 0)?), see [8]
for the expanded expressions of these sufficient statistics.

Having specified a distribution to capture our beliefs about the behaviour of the function,
we define an acquisition function «(:|D;) for choosing the next evaluation point x;y; =
arg max,¢ y a(x|D;). The acquisition function must trade-off exploration and exploitation to en-
sure that the location of the global maximum (or minimum) is found in as few steps as possible.

Although many acquisition strategies have been proposed (see for example [5, B, [, B, [, B, [T, IT]),
the expected improvement (EI) criterion remains a default choice in popular Bayesian optimisation
packages, such as SMAC and Spearmint [12, ], and consequently we adopt it here.

Finally, several approaches have been proposed to overcome heteroscedasticity [I73, T4, 15, 6, 17,
IR, [Y, 20]. Our approach is uniquely crafted for BO tasks, exploits all the information obtained and
is able to work efficiently even with a few data points.

3 Treed Bayesian Optimisation

3.1 Constructing Gaussian process trees

Our proposed Heteroscedastic Treed Bayesian Optimisation (HTBO) method is based on CART,
a decision tree model of Breiman et al. [ZT]. A Decision tree may be understood in terms of a
sequence of binary tests applied to an input x, which determines the path followed by x from the
root of the tree to a leaf. Each node has a function of the form h(x) > 7, where h extracts a
coordinate (feature) of x and compares it to a threshold 7. The tree is constructed in a recursive
manner by choosing splits on features and thresholds so as to reduce uncertainty [22].

As suggested by the CART model, we can measure uncertainty in a node A using the empirical
mean squared error: U(A) = ﬁ D yieallia— y;)?, where 7 4 is the average of the output values in
A. We could also use the entropy of the GPs in each node, but we found this alternative uncertainty
measure to require much more computation without leading to better performance.

The optimal split thresholds are the ones that reduce uncertainty the most when splitting node A into
A;w and A;{)T. They are obtained by optimising the following reduction in uncertainty objective:
! 1
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In CART, the splitting threshold 7 of feature h(x) is the midpoint of two points (x;,x;), which is
convenient for constant predictions as x; will go to the left child and x; to the right one respectively.
However, in the proposed approach this would create unwanted variance in the gap between x; and
x;. This antagonises the goal of minimising the conditional variance in Bayesian Optimisation [23]
as shown in the left plot of Figure . To overcome this difficulty, we place 7 exactly at one of the
points x;, and let x; belong to both children nodes, as shown on the right hand side of Figure [. This
splitting strategy is essential for Bayesian optimisation to work well with treed GPs.

3.2 GP hyper-parameter optimisation

A common approach to estimate the hyper-parameters
of GPs is to maximise the log-marginal-likelihood [4].
The simplest way to implement this strategy in our set-
ting is to independently maximise the GP log-marginal-
likelihoods in each leaf. This naive strategy is however wplog p(yp|xp,0p)
bound to fail because some leaves have very few data

points. To circumvent this difficulty, we need a way of Figure 2: Tree-structured hyper-parameter
aggregating information from different levels of the tree ~ estimation for the GP at leaf node D.
hierarchy.
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Figure 1: Comparison between conventional CART splitting and our proposed splitting method.

To describe our solution to this problem, we need to introduce some notation. Let M ;(D) denote
the set of data point pairs (x,y) that fall in node j, let 7(i) = {t : (x¢,y:) € M;(D)} denote the
data pairs in node ¢, let path,;(D;) return the index of each node 7 in the path from the root node to
a leaf node j, and finally let depth;(D;) return the depth of node i.

Suppose we are interested in estimating the hyper-parameters of the GP associated with the j-th leaf.
Our solution is to maximise the sum of weighted log-marginal-likelihoods for nodes in the path from
the root to the j-th leaf, as depicted in Figure D. This hierarchical information aggregation can be
cast as an optimisation problem, or by adopting a more Bayesian approach, it can be estimated by
simply putting a prior p() on the hyper-parameters and sampling from:

Z w; log p(y (i) [Xr (i), 0) + log p(0), 2
i1€path;(Dy)
using Markov chain Monte Carlo (MCMC), where
o Mi(D) 1
" IMi(Dy)| (14 depth;(Dy) — depthi(Dy))’

The first ratio in the weight expression is a normalisation factor ensuring that the weight at the leaf
is equal to 1. The second ratio ensures that points closer to the leaf will have a higher influence in
the estimate of the hyper-parameters for the GP associated with that leaf.

i € path;(Dy).

3.3 Putting it all together

At each iteration of Bayesian optimisation, the decision tree is reconstructed. In doing so, we ensure
that there is a minimum number of data points per leaf (5 in our experiments). Subsequently, we
estimate the hyper-parameters, the kernel amplitude 6, and the mean y; as discussed in the previous
section. Once the GPs have been optimised for the data on each leaf, predictions are made employing
all observations, and we use their statistics to construct the EI acquisition function. This function
is then optimised using a d-dimensional adaptive Sobol Grid with 20, 000 points as in the package
Spearmint.

Figure B compares a few iterations of the proposed treed approach against standard Bayesian op-
timisation on a one-dimensional heteroscedastic function. While the standard approach fails, the
proposed method, hierarchical treed Bayesian optimisation (HTBO), is able to overcome non-
stationarity to find the maximum of the objective function.

4 Experiments

We compare the proposed HTBO method and a hybrid approach (HTBO WARP), where the leaves
of the decision tree use input warping and the parameters of the Beta CDF are estimated using the
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Figure 3: Comparison between standard BO (a-c) and the proposed HTBO method (d-f). HTBO is able to find
the maximum in 16 iterations, while BO is not able to overcome heteroscedasticity and over-samples one of the
local maxima.

proposed hierarchical model , against standard Bayesian optimisation (BO) and Bayesian optimisa-
tion with input warping (BO WARP) [B].

Our benchmarks include a one-dimensional synthetic example with a discontinuity (RKHS) [24],
a synthetic example from R. Gramacy [23] where the objective function is flat over a large region
(2-D Exp), two standard benchmarks from automatic machine learning (online LDA and structured
SVM) and two mining exploration examples (Agromet and Brenda mines) from the kriging literature
[26]. In the latter, we have the coordinates and depth of the explored regions as well as the function
evaluation (e.g., amount of ore), and hence we only query EI at the available points.

Figure B summaries the results. Overwhelmingly the proposed approach leads to significant im-
provements over this wide range of test cases. The results also confirm that input warping is very
useful, but that it is insufficient to handle some types of heteroscedasticity, where our proposed
approaches outperform the competition and can yield both performance gains and robustness.
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Figure 4: Performance evaluation of BO, BO with input warping (BO Warp), and the proposed approaches
(HTBO and HTBO Warp) on synthetic functions, algorithm configuration problems and mining problems.
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