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Abstract

In Bayesian Optimization, when using a Gaussian Process prior, some kernels
adapt better than others to the objective function. This research evaluates the
possibility of dynamically changing the kernel function based on the probabil-
ity of improvement. Five kernel selection strategies are proposed and tested in
well known synthetic functions. According to our preliminary experiments, these
methods can improve the efficiency of the search when the best kernel for the
problem is unknown.

1 Introduction

In order to find the global optimum in expensive black-box functions [6] each evaluation point
must be carefully selected. In this scenario two possible strategies are: minimizing the number of
evaluations while maximizing the information gain, or maximizing the cumulative reward by finding
a balance between exploration and exploitation. However, it has been proved that both strategies are
closely related [13]. Bayesian Optimization (BO) [10] has been widely used to face this optimization
problem regardless of the strategy, giving promising results [4] [3].

When there is some previous knowledge about the characteristics of the objective function, such as
smoothness, Gaussian Process (GP) priors are a popular choice to take advantage of this knowledge
[9] [15]. Thus, depending on the kernel, the GP assumes some characteristics to fit the objective
function.

Nevertheless, the shape of the objective function might change depending on the area of the search
space. Although kernel selection has been extensively studied in GP research field [11], this decision
is not a trivial one and it clearly influences the algorithm’s performance. Moreover, GP priors are
known to be expensive to compute. The covariance matrix increases every step and sampling the
GP becomes more and more expensive.

In our context, when the evaluation of the objective function is considered to be expensive, this
computational cost is less relevant. It is even possible to carry out an optimization computing several
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GPs in parallel without increasing significantly the overall cost. The selection of the kernel can be
done during the optimization process to take advantage of the knowledge acquired, improving the
search results.

2 Kernel Functions and Probability of Improvement

In this research, stationary kernels will be considered. These kernels only take into account the
distance between the points, ignoring their absolute positions (r = ||x′ − x||).
Table 1 shows six well known stationary kernel functions selected for the experiments, where l is
the lengthscale hyper-parameter and σn refers to the noise.

Kernel Functions

kSE (r) = exp
(
−r2/2l2

)
+ σn kM32 (r) =

(
1 +
√
3r/l

)
exp

(
−
√
3r/l

)
+ σn

kM52 (r) =
(
1 +
√
5r/l + 5r2/3l2

)
exp

(
−
√
5r/l

)
+ σn kE (r) = exp (−r/l) + σn

kE15 (r) = exp
(
− (r/l)1.5

)
+ σn kRQ2 (r) =

(
1 + r2/4l2

)−2
+ σn

Table 1: Kernel Functions. kSE : Squared Exponential. kM32: Matern 32. kM52: Matern 52. kE :
Exponential. kE15: γ-exponential. kRQ2: Rational Quadratic.

To have a good criterion to select the next point, BO relies on the acquisition function (u(·)). It
suggests a measure of utility for every point in the search space given the data. In addition, this
function regulates the exploration versus exploitation trade-off.

Similarly, in this experiment, the acquisition function will be used to guide the search. However,
having several GPs implies having several acquisition functions and they must be comparable. Thus,
Probability of Improvement[7] has been selected as the acquisition function, where the probability
of the observation to be better than the best observed point is measured.

PI(x) = P (f(x) ≥ f(x+) + ξ) = Φ

(
µ(x)− f(x+)− ξ

σ(x)

)
Where µ and σ are the mean and the variance given by the GP, and x+ is the best point so far. Φ
denotes the cumulative distribution function (CDF) of a normally distributed variable. Finally, as
recommended in previous studies, ξ = 0.01 will be used to guarantee the exploration[8].

3 Dynamic Kernel Selection Criteria

Our proposal resembles a typical BO algorithm [1] with two slight differences. Fist, during the
updating process, all GPs get the latest state of the data set (D1:t). Second, when selecting the next
point several acquisition functions are optimized. Then, to select the next point a chooser function
is called.

Algorithm 1: Dynamic Kernel Selection algorithm

1 Sample a random point: y1 = f(x1) and Initialize the data D1 = {(x1, y1)}
2 Initialize the GPs← D1

3 for t = 2 to ... do {
4 Each GP (k) suggests a point to sample by optimizing the acquisition function:

xt,k = argmaxxuk(x|D1:t−1)

5 Choose a point xt← choose (xt,k)
6 Sample the objective function: yt = f(xt)

7 Update the data D1:t = {D1:t−1, (xt, yt)}
8 Update the GPs← D1:t

9 }
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Based on Algorithm 1 different choose functions have been defined:

DynamicRandom All GPs will be updated at every function evaluation, and they will be randomly
selected during the optimization process.

BestUtility All GPs optimize their acquisition function and suggest a point to evaluate. The point
with the highest probability of improvement is selected for the next evaluation.

WeightedBest Each acquisition function is weighted (u∗k(x) = uk(x)wk,t). Initially all weights
are 0.5. After the evaluation, the improvement is measured and the selected GP updates its
weight (wk,t+1 = wk,t(Φ(it−1) + 0.5)). Other GPs remain the same (wk,t+1 = wk,t).

ParallelTest At first step, all GPs optimize their acquisition function and they suggest a point to
evaluate. All these points are evaluated and their improvement is measured. The GP with
the highest improvement is selected for the next N steps. This process is repeated until
any stop criteria is met. In our experiments N = 20 was used.

UtilityMean Instead of optimizing each acquisition function on its own, the next point is selected
by maximizing the mean of these functions (u(x) =

∑n
k=1

uk(x)
n ). Thus, choose function

includes the optimization step.

4 Experimental results

The proposed choose functions were implemented as part of a software framework. To set the hyper-
parameters, and for the sake of simplicity, each kernel was tested 25 times with 100 hyper-parameter
values and the combination with minimum regret was selected. Other approaches to set the hyper-
parameters [12][14] could be considered in the future. On the other hand, in order to optimize the
acquisition function, DIRECT was used [5], a global-derivative free algorithm previously applied in
[1].

Six well known test functions were selected: Branin-Hoo, Camelback, Hartmann 6d, Schwefels,
Rosenbrock and Rastrigin [2]. These functions have been optimized using all previously described
selection strategies. Each optimization process was carried out reaching 100 function evaluations
and the minimum error at each step is recorded. Due to the stochastic nature of the algorithm, the
experiments were repeated 25 times and the arithmetic mean was calculated.

Figure 1 shows the results of the experimentation. Only Hartmann 6d, Rosenbrock and Rastrigin
functions are shown, where different behaviors can be observed: for Hartmann 6d and Rosenbrock,
our proposals shows a better performance than single kernels, while for Rastrigin, our proposal is
not able to outperform the single kernels. The rest of the functions can be found in the website of
the project 1.

The upper plots correspond to the average minimum error of the 25 runs. Kernels described in
section 2 are compared to the Selection Criteria in section 3. Knowing the kernel selection frequency
is interesting to understand the behavior of the choose functions. Hence, the lower graphs show the
percentage of times each kernel is selected throughout the optimization process.

Hartmann 6d is a function with 6 dimensions, 6 local optima and a global optimum.
Here, RationalQuadratic2 and SquaredExponential compete side by side along with
GammaExponential15 to get the best reward. Regarding to the choosers, WeightedBest out-
performs the rest of the choosers, getting the best overall reward. In the first steps, this chooser tries
to use a Matern32 kernel, but soon changes to SquaredExponential as it is the best performing
kernel, and finally, it relies on Exponential kernel for the rest of the experiment. The strategy pro-
posed by WeightedBest combines these kernels, improving their individual results. UtilityMean
also gets a nice reward, even improving WeightedBest’s results in the last evaluation.

1http://ibaidev.bitbucket.org/dynamickernelselection/
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Exponential GammaExponential15 SquaredExponential Matern32 Matern52 RationalQuadratic2
Hartmann 138.59 69.54 57.59 145.08 139.59 61.75

Rosenbrock 2030808.97 1852830.13 1759822.40 1877182.86 1900499.22 1837902.24
Rastrigin 6011.16 4919.25 5757.98 6827.07 6810.02 5129.48

DynamicRandom BestUtility WeightedBest ParallelTest UtiltyMean
Hartmann 63.73 88.76 49.57 71.15 53.36

Rosenbrock 1850373.80 2030808.97 2016131.36 1986641.55 1338827.99
Rastrigin 5619.27 5589.32 5567.54 5840.98 5708.85

Table 2: Regret.
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Figure 1: Minimum error per function evaluations

In the other experiment, Rosenbrock has been selected to contrast the results in Hartmann 6d.
This function is used with 4 dimensions and a search interval between −10 and 10. Matern32,
Matern32 and SquaredExponential have the lowest regret but they are not able to improve in the
second half of the optimization. Exponential kernel also improves in the middle part of the pro-
cess. This time, UtilityMean clearly gets the best reward, being able to combine the goodnesses
of each kernel. However, WeightedBest is not able to improve the local minimum, even correctly
selecting SquaredExponential to do it.

Similarly, Rastrigin is used with 4 dimensions and a search interval between −10 and 10. In
this case, most of the kernels get locked in a local minimum. GammaExponential15 and
RationalQuadratic2 have the lowest regret but they are not able to improve in the second half
of the optimization. On the other hand, none of the choosers is able to beat the best kernel. As
shown in the Figure, WeightedBest is not able select a good kernel, cyclically choosing the worst
ones. Although, UtilityMean improves in the last evaluations, its overall reward is lower than
mentioned kernels.

5 Discussion

This research focuses on finding new ways to combine the knowledge given by each kernel. A test
framework has been developed to experiment with model changes during the optimization process.
6 kernels and 5 selection criteria were tested in 6 synthetic functions. According to the results, it has
been shown that combining kernels can be a useful technique to improve the performance of GPs.
However, the results vary depending on the objective function. When optimizing each acquisition
function, it was difficult select the best depending on the acquisition function. On the contrary, the
mean of the utility functions has shown to be a promising strategy. Further research is suggested,
including new functions and strategies.
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