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Abstract

Portfolio methods provide an effective, principled way of combining a collection
of acquisition functions in the context of Bayesian optimization. We introduce a
novel approach to this problem motivated by an information theoretic consider-
ation. We show that our method outperforms existing portfolio methods on sev-
eral real and synthetic problems, including geostatistical datasets and simulated
control tasks. We also demonstrate that as well as outperforming other portfo-
lio methods, our proposed method is robust to the inclusion of poor acquisition
functions.

1 Introduction

We are interested in finding a global minimizer x? = argminx∈X f(x) of a function f over some
bounded domain, typically X ⊂ Rd. We further assume that f(x) can only be evaluated via a
series of queries xt to a black-box that provides noisy outputs yt from some set, typically Y ⊆ R.
For this work we assume yt ∼ N (f(xt), σ

2), however, our framework can be extended to other
non-Gaussian likelihoods. In this setting, we describe a sequential search algorithm that, after t
iterations, proposes to evaluate f at some location xt+1 given by an acquisition strategyα(Dt) where
Dt = {(x1, y1), . . . , (xt, yt)} is the history of previous observations. Finally, after T iterations the
algorithm must make a final recommendation x̃T , i.e. its best estimate for the optimum.

No single acquisition strategy known today provides better performance over all problem instances.
In fact, we have empirically observed that the preferred strategy may change at various stages of the
sequential optimization process due to varying trade-offs of exploration and exploitation. To address
this issue, Hoffman et al. propose the use of a portfolio containing multiple acquisition strategies,
and selecting between them using a meta-criterion [5].

Our contribution is a novel meta-criterion which we call the Entropy Search Portfolio (ESP). By
viewing the location of the minimizer x? as a random variable, information-theoretic approaches,
such as the work of [8, 3, 4], aim to select a new query point which minimizes posterior entropy of
x? at each iteration. We use this same strategy to select between points suggested by acquisition
functions in a portfolio. We provide empirical evidence that our approach results in performance
gains not only over previous portfolio strategies but also over the fundamental strategies that make up
the portfolio. We also show that ESP exhibits increased robustness with respect to poorly performing
acquisition strategies.
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Algorithm 1 Entropy Search Portfolio
Require: candidates {xk}, observations D

1: z(i) ∼ p(x?|D), i = 1, . . . , G
2: for k = 1 : K do
3: for n = 1 : N do
4: y(n)

k ∼ p(y|xk,D)
5: D̃(n)

k = D ∪ {(xk, y
(n)
k )}

6: f (s)
kn ∼ p(f |D̃

(n)
k ) for s = 1 : S

7: p̂ikn = 1
S

∑
s I
[
i = argminj [f

(s)
kn ]j

]
8: end for
9: uk = 1

N

∑N
n=1

∑G
i=1 p̂ikn log p̂ikn

10: end for
11: k? = argmaxk uk
12: return xk?

Figure 1: Visualization of the Entropy Search Portfolio. Top panel: for each candidate xk (blue dashed line)
we draw N hallucinations (blue diamonds) from the conditional. In practice this is done with quasi-Monte-
Carlo to reduce variance. Middle panel: for each hallucination y(n)

k we augment the GP model (green line and
shaded area) and sample it S times at the discrete points z(i) to obtain the f (s)

kn (blue triangles) for s = 1, . . . , S.
We find the minimizer of each vector f (s)

kn (magenta triangle). Bottom panel: finally, we bin the S minimizers
into a discrete empirical distribution p̂ depicted here as a magenta histogram.

2 Entropy search over portfolios

Portfolios are collections of base strategies A = {αk}Kk=1. Each strategy is an expert which rec-
ommends a candidate point xk = αk(D) to be selected at iteration t. Our task is to select the most
promising candidate according to some meta-criterion. In particular, our approach uses a probabilis-
tic model of the location of the unknown global minimizer x?.

Given data D, let P( dx?|D) = P(argmin f(x) ∈ dx?|D) denote the posterior over minimizer
locations, with density p(x?|D). This distribution is induced by our GP posterior. We propose our
meta- criterion u(xk|D) = Ep(yk|D,xk)[H[p(x?|D̃k)]], where D̃ = D ∪ {(xk, yk)} contains one
additional fixed xk and a corresponding random yk simulated from the posterior predictive distribu-
tion p(yk|D,xk). This corresponds to the expected entropy of the distribution of the minimizer after
selecting candidate input xk. In other words, the candidate selected by this criterion is the one that
results in the greatest decrease in uncertainty about the location of the minimizer.

The expectation with respect to the predictive distribution can easily be approximated via sampling
and Monte Carlo integration. Meanwhile, the entropy estimation is more involved due to the diffi-
culty of evaluating p(x?|D̃k). For continuous densities p the differential entropy can be written as
H[p(x)] = −

∫
p(x) log p(x) dx. Instead we approximate this density with a discrete distribution

p̂ restricted to a finite set of representer points denoted {z(i)}Gi=1 sampled directly from p(x?|D̃k),
corresponding to Line 1 in Algorithm 1. Exactly how to do this is non-trivial and we give an outline
of the steps at the end of the section.

With this discretized distribution p̂ and the Monte Carlo integration of the outer expectation, we
approximate our meta-criterion as u(xk|D) ≈ 1

N

∑
H
[
p̂(x?|D̃(n)

k )
]
, where D̃(n)

k = D∪{(xk, y
(n)
k }

with y(n)
k ∼ p(·|xk,D) and where H now represents the discrete entropy

H
[
p̂(x?|D̃(n)

k )
]
= −

∑G
i=1 p̂(x? = z(i)|D̃(n)

k ) log p̂(x? = z(i)|D̃(n)
k ). (1)

We are left with the problem of computing p̂(x? = z(i)|D̃(n)
k ). Recall that p̂ is the probability

distribution over minimizers of a GP-distributed random function where the minimizers are re-
stricted to a discrete and finite set. This can be sampled exactly as follows. Let the random
variable [fkn]i = f(z(i)), i = 1, . . . , G, be a vector of latent function values evaluated at the
representer points and conditioned on data D̃(n)

k . This vector simply has a Gaussian distribution
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Figure 2: Absolute error of the best observation for the Branin and Hartmann 3 synthetic functions. The
9 additional random experts in RP9, GPHedge9, and ESP9 affect the RP and GPHedge methods much more
dramatically than ESP.

and as a result we can produce S samples f (s)
kn ∼ p(·|D̃(n)

k ) from the resulting GP posterior. The
probabilities necessary to compute the entropy can then be approximated by the relative counts
p̂ikn = 1

S

∑
s I
[
i = argminj [f

(s)
kn ]j

]
. In other words, p̂ikn represents the number of times repre-

senter point z(i) was the minimizer in S samples from the posterior GP with data D ∪ {(xk, y
(n)
k }.

Finally, by combining these ideas we can express our entropy-based meta-criterion

u(xk|D) = − 1
N

∑N
n=1

∑G
i=1 p̂ikn log p̂ikn. (2)

Pseudocode computing this quantity is given in Algorithm 1 and we provide a corresponding visu-
alization in Figure 1.

Let us now address the issue of producing samples from the posterior over global minima p(x?|D).
In the discrete and finite setting, this can be done via probability matching by repeating the following
generative process: i) draw a sample from the posterior distribution p(f |D) and ii) return the index
of the maximum element in the sampled vector. We employ this same approach over our continuous
domain. To avoid constructing an infinite-dimensional object representing the function f , we sample
and optimize an analytic approximation to f which uses Bochner’s lemma [1, 7].

We omit the details here but intuitively we sample a function by first sampling a fixed number of
frequencies from the spectral density of the GP kernel and then the corresponding coefficients for
those frequencies. We sample the coefficients from a specific distribution such that the weighted
sum of those Fourier basis functions approximates one sample from the posterior GP. We then have
a fixed function to maximize and obtain an approximate sample from p(x?|D). In this paper we used
this process in two ways: first to obtain an approximation to Thompson sampling in the continuous
domain (as was also done in [4]), and second to sample our representer points z(i).

3 Experiments

We compare ESP against three well-known Bayesian optimization acquisition functions, namely EI,
PI, and Thompson. For EI we used the implementation available in the spearmint package1, while
the latter two were implemented in the same framework. All three methods were included in the
portfolios. We also compare ESP against the GPHedge portfolio method [5] and an approach which
selects between different base strategies uniformly at random labeled RP.

We begin with two synthetic functions commonly used for benchmarking global optimization meth-
ods: Branin and Hartmann 3 [6]. Figure 2 reports the observed performance measured in absolute
error on a logarithmic scale. As expected, ESP makes the best use of its base experts and outper-
forms all other methods in both examples. It is also interesting to note that each of the two examples
favour their own base strategy. Thompson is a clear winner on Branin, while EI is the more attractive
option on Hartmann 3. This observation motivates the use of portfolios of acquisition functions.

1https://github.com/JasperSnoek/spearmint
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Figure 3: Best observed evaluation on mining datasets Brenda and Agromet. ESP outperforms the other
portfolio methods while RP performs worst.

In these synthetic experiments we also demonstrate the robustness of ESP with respect to to the
inclusion of poor base strategies. We do so by adding 9 random experts to each portfolio (we denote
these ESP9, RP9, etc.). These so-called random experts select a point uniformly at random in the
bounding box X . We expect this sort of random search to be comparable to the other base methods
in the initial stage of the optimization and eventually provide too much exploration and not enough
exploitation. Note however that a few random experts in a portfolio could actually be beneficial in
providing a constant source of purely exploratory candidates; precisely how many is an interesting
question we do not discuss in the present work. Nevertheless, for the dimensionality and difficulty of
these examples, we propose 9 additional random experts as being too many and indeed we observe
empirically that they substantially deteriorate performance for all portfolios.

We observe that, especially on Hartmann 3, ESP is virtually unaffected until it reaches 5 digits of
accuracy. Meanwhile, the progress made by RP is hindered by the random experts which it selects
as frequently as the legitimate acquisition functions. Significantly worse is the performance of
GPHedge which, due to the initial success of the random experts, favours these until the horizon is
reached. Note in contrast that ESP does not rely on any expert’s past performance, which makes it
robust to lucky guesses and time-varying expert performances.

The next set of experiments were carried out on two datasets from the geostatistics community,
referred to here as Brenda and Agromet [2]. Since these datasets consist of a finite sets of points, we
transformed each of them into a function that we can query at arbitrary points via nearest neighbour
interpolation. This produces a jagged piecewise constant function, which is outside the smoothness
class of our surrogate models and hence a relatively difficult problem. Brenda is a dataset of 1,856
three-dimensional observations while Agromet is a dataset of 18,188 two-dimensional observations.
Results on these functions are shown in Figure 3.

We note that PI, which has so far been an under-achiever, is among the better strategies on Agromet,
while EI is the worst. This is further motivation for the use of portfolios. On both of these exam-
ples, RP performs poorly whereas GPHedge fares somewhat better. We can see that ESP performs
particularly well on Brenda. On Agromet, ESP outperforms the other portfolio methods and is com-
petitive with the best acquisition function—Thompson in the initial exploration phase, followed by
PI after around 60 evaluations.

4 Conclusion

In this work we revisited the use of portfolios for Bayesian optimization. We introduced a novel,
information-theoretic meta-criterion ESP which can indeed provide performance matching or ex-
ceeding that of its component experts. This is particularly important since we show in our experi-
ments that the best acquisition function varies between problem instances and horizons considered.
We have also shown that ESP has robust behavior across functions of different dimensionality even
when the members of its portfolio do not exhibit this behavior. Further, ESP is more robust to poorly
performing experts than other portfolio mechanisms.
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