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Abstract

Bayesian optimisation has gained great popularity as a tool for optimising the pa-
rameters of machine learning algorithms and models. Somewhat ironically, setting
up the hyper-parameters of Bayesian optimisation methods is notoriously hard.
While reasonable practical solutions have been advanced, they can often fail to
find the optima. Surprisingly, there is little theoretical analysis of this crucial
problem in the literature. To address this, we derive a cumulative regret bound
for Bayesian optimisation with Gaussian processes and unknown kernel hyper-
parameters in the stochastic setting. The bound, which applies to the expected
improvement acquisition function and sub-Gaussian observation noise, provides
us with guidelines on how to design hyper-parameter estimation methods. A sim-
ple simulation as well as experiments on standard benchmarks demonstrate the
importance and effectiveness of following these guidelines.

1 Introduction

Bayesian optimisation has become an important area of research and development in the field of ma-
chine learning, as evidenced by recent media coverage [8] and a blossoming range of applications to
interactive user-interfaces [4], robotics [16, 19], environmental monitoring [18], information extrac-
tion [28], combinatorial optimisation [13, 29], automatic machine learning [3, 23, 25, 26, 12], sensor
networks [9, 24], adaptive Monte Carlo [17], experimental design [1] and reinforcement learning [5].

In Bayesian optimisation, Gaussian processes are one of the preferred priors for quantifying the un-
certainty in the objective function [5]. However, estimating the hyper-parameters of the Gaussian
process kernel with very few objective function evaluations is a daunting task, often with disastrous
results as illustrated by a simple example in [2]. The typical estimation of the hyper-parameters
by maximising the marginal likelihood [22, 15] can easily fall into traps; as shown in [6]. Sev-
eral authors have proposed to integrate out the hyper-parameters using quadrature and Monte Carlo
methods [21, 4, 23]. Despite the advantages brought in by this more sophisticated treatment of un-
certainty, Bayesian optimisation can still fall in traps, as illustrated with a simple simulation example
in this paper. To the best of our knowledge, the work of Bull [6] provides the only known regret
bound for Bayesian optimisation when the hyper-parameters are unknown. Here, we extend the
work of Bull to stochastic objective functions with sub-Gaussian observation noise, e.g., symmetric
Gaussian, Bernoulli, or uniform noise. We derive an algorithm that is inspired by the theory and
show that not only is it more robust to misspecification of hyper-parameters but also is competitive
against the state of the art approaches on standard benchmarks.

2 Bayesian optimisation

We consider a sequential decision approach to global optimisation of smooth functions f(·) : X 7→
R over an index set X ⊂ Rd. At the t-th decision round, we select an input xt ∈ X and observe the
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Algorithm 1 Bayesian optimisation with Hyper-parameter optimisation.
input Threshold tσ > 0, percentage of reduction parameter p ∈ (0, 1), and c2 > c1 > 0.
input Lower and upper bounds θL, θU for the hyper-parameters.
input Initial length scale hyper-parameter θL ≤ θ1 ≤ θU .
1: Initialize E = 0
2: for t = 1, 2, . . . do
3: Select xt = argmaxx∈X α

EI
θt
(x|Dt−1)

4: if σ2
t−1(xt; θt) < tσσ

2 then
5: E = E + 1
6: else
7: E = 0
8: end if
9: Augment the data Dt = Dt−1 ∪ (xt, yt)

10: if E = 5 then
11: Restrict θU such that θUi = max

{
min

[
pmaxj{θUj }, θUi

]
, θLi

}
12: E = 0
13: end if
14: Choose hyper-parameters θt+1 such that θL ≤ θt+1 ≤ θU .
15: Choose hyper-parameter νθt+1

t such that c1ξ
θt+1
t+1 ≤ ν

θt+1
t+1 ≤ c2ξ

θt+1
t+1 , where ξθt

t is defined in [27].
16: end for

value of a black-box reward function f(xt). The returned value may be deterministic, yt = f(xt),
or stochastic, yt = f(xt) + εt. Our goal is to approach optimiser x∗ = arg maxx∈X f(x) rapidly.

Although the function is unknown, we assume that it is smooth and introduce a Gaussian process
prior to encode our beliefs over the smoothness of the function. We derive a posterior distribution
p(f(·)|Dt) from which we can carry out inference. A Gaussian processes (GP) offer a flexible and
relatively simple way of placing priors over functions. Such priors are completely characterised
by a mean function m(·) and a covariance kernel k(·, ·). In particular, given any finite collection
of inputs x1:t the outputs are jointly Gaussian, f(x1:t)|θ ∼ N (m(x1:t),K

θ(x1:t,x1:t)), where
Kθ(x1:t,x1:t)ij = kθ(xi,xj) is the covariance matrix (parametrised by θ) and m(x1:t)i = m(xi)
the mean vector. For convenience, we assume a zero-mean prior. We consider the following types of
covariance kernels: kθSE(x,x′) = exp(− 1

2r
2) and kθMatérn(5/2)(x,x

′) = exp(−
√

5r)(1 +
√

5r+ 5
3r

2)

where r = (x − x′)Tdiag(θ2)−1(x − x′). We assume that the observations of the function at any
point xt are corrupted by σ-sub-Gaussian noise yt = f(xt)+εt. It is important to note that one does
not need to implement GP differently because of the sub-Gaussianity assumption and theoretical
results in this paper follows from standard implementations of GPs.

Having specified a prior distribution, we turn our attention to the problem of selecting an acquisi-
tion function α(·|Dt) for choosing the next query point, xt+1 = arg maxx∈X α(x|Dt). Although
many acquisition functions have been proposed (see for example [20, 14, 11, 10, 23, 12]), the ex-
pected improvement (EI) criterion remains a default choice in popular Bayesian optimisation pack-
ages, such as SMAC and Spearmint [13, 23]. If we let x+

t = arg maxi≤t f(xi;θ) denote the
current incumbent, the EI acquisition function can be written in closed form as αEI(f)

θ (x|Dt) =

E[max{0, f(x) − f(x+)}|Dt] = σt(x;θ)[aΦ(a) + φ(a)] with a = µt(x;θ)−f(x+)
σt(x;θ)

, and φ and Φ

are the standard normal PDF and CDF respectively. In the special case of σt(x;θ) = 0, we set
αEI(f)
θ (x|Dt) = 0. While the above member is reasonable for deterministic optimisation, observation

noise could cause it to be brittle in the stochastic case. In the stochastic setting, the improvement over
the best mean value µ+

θ = maxx∈X µt(x;θ) seems to be a more reasonable alternative. In this pa-
per, we will consider a re-scaled version of this criterion: αEI

θ (x|Dt) = E[max{0, f(x)−µ+
θ }|Dt] =

νσt(x;θ)[uνΦ(uν ) + φ(uν )] where u =
µt(x;θ)−µ+

θ

σt(x;θ)
and ν is a parameter to be estimated. Intuitively,

this parameter enables us to rescale the kernel. In the deterministic case, it plays an equivalent role
to multiplying the kernel by an unknown coefficient ν.

3 Theoretical analysis

Our theoretical analysis uses regret to measure convergence and information gain to measure how
informative the samples are about f(·). It assumes that the noise process εt is sub-Gaussian, and that

2



0.0 0.2 0.4 0.6 0.8 1.0
2

1

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0
2

1

0

1

2

3

4

t = 20

0.0 0.2 0.4 0.6 0.8 1.0
2

1

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0
2

1

0

1

2

3

4

t = 60

Figure 1: Convergence of EI with slice sampling over the kernel hyper-parameters [left] and EI using Algo-
rithm 1 [right] at two function evaluation steps (t). The objective function (in blue) was constructed so that it
has a trap. Unless EI with slice sampling hits the narrow optimum by random chance, it becomes too confident
and fails to converge after 60 evaluations. In contrast, the confidence bounds for Algorithm 1 can increase
enabling it to sample the function in a more reasonable way and thus find the optimum.

the function f(·) is smooth according to the reproducing kernel Hilbert space (RKHS) associated
with the GP kernel kθ(·, ·). As in [24], we will measure the performance of the Bayesian optimisa-
tion algorithm using regret. The cumulative regret after T iterations is RT =

∑T
t=1 f(x∗)− f(xt).

For more informative introductions of the background material, please refer to the longer ver-
sion of this paper [27]. Our theorem assumes bounds on the kernel hyper-parameters of the form
θL ≤ θt ≤ θU for all t ≥ 1 with f(·) ∈ HθU (X ) (f is an element of the RKHS defined by param-
eters θU ). While we could recall all the conditions on the kernel function necessary for our theorem
to apply, we simply restrict the family of kernels to one that satisfies the conditions detailed in [6].
Without loss of generality, we assume that k(x,x)= 1. Our theorem characterising the growth in the
cumulative regret RT with the number of function evaluations T follows.

Theorem 1. Let C2 :=
∏d
i=1

θUi
θLi

. Suppose θL ≤ θt ≤ θU for all t ≥ 1 and f(·) ∈ HθU (X ). If(
νθt
)2

= Θ
(
γθt−1 + log1/2(2t2π2/3δ)

√
γθt−1 + log(t2π2/3δ)

)
for all t ≥ 1. Then with probabil-

ity at least 1− δ, the cumulative regret obeys the following rate:

RT = O
(
βT

√
γθ

L

T T

)
, (1)

where βT = 2 log
(
T
σ2

)
γθ

L

T−1 +
√

8 log
(
T
σ2

)
log1/2(4T 2π2/6δ)

(√
C2‖f‖HθU (X ) +

√
γθ

L

T−1

)
+

C2‖f‖2HθU (X ).

For a proof of the theorem, please refer to [27]. Our result is analogous to Theorem 3 of [24] which
proves convergence rates for the GP-UCB algorithm in the agnostic setting. Their result, however,
does not allow for the estimation of hyper-parameters. In addition, EI does not require explicit
knowledge of the RKHS norm of the objective function while GP-UCB does require this.

4 An algorithm inspired by the theory

For Theorem 1 to hold, it is necessary that there exist element-wise upper-bounds θU on the hyper-
parameters θ, such that the objective function f(·) ∈ HθU (X ). In practice, it is difficult to assess
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Figure 2: Comparison of the proposed approach (RO-MCMC) with the Spearmint package [23] (EI-MCMC)
on standard benchmarks [7] (lower is better). Here, the proposed outperforms the state of the art.

this condition. To surmount this difficulty, we draw inspiration from [29], and propose to reduce
the upper bound of the length scales θU when the algorithm becomes overconfident. In particular,
we adaptively reduce θU whenever the model repeatedly samples points of low posterior variance
in comparison to the noise variance σ2. Once the algorithm optimises to the precision of the noise
variance, it suffers from a slower convergence rate. As θU is successively decreased, after a finite
number of iterations, we can ensure that f(·) ∈ HθU (X ) as long as there exists θ ≥ θL such that
f(·) ∈ Hθ(X ). We advocate a conservative choice of θL whenever we have little knowledge of the
range of possible values of θ. In practice, we could use a number of strategies for estimating the
hyper-parameters, provided they fall within the bounds set by Theorem 1. In particular, we could
use maximum likelihood or MCMC (taking only one sample) to estimate the hyper-parameters in
this constrained space. The full algorithm is summarised in algorithm 1. The astute reader would
have noticed the parameters tσ , p, c2 and c1 in the algorithm. If we want to achieve an accuracy
comparable to the noise variance, we should set tσ = 1. The other parameters simply determine
how fast the algorithm converges and should be set to reasonable fixed values, e.g. p = 0.5, c2 = 1
and c1 = 0.001. Provided tσ > 0, p ∈ (0, 1) and c2 > c1 > 0, the theory is satisfied.

If we have strong beliefs about our GP prior model, it may seem unnecessary to estimate our param-
eters with Algorithm 1. When our prior belief is misplaced, however, we could fail to converge if
we were to follow the traditional probabilistic approach. We provide an illustration of this effect by
optimising the following stochastic function:

f(x) = 2kθ1SE(x1, x) + 4kθ2SE(x2, x) + ε

over the interval [0, 1], where θ1 = 0.1, θ2 = 0.01, x1 = 0.1, x2 = 0.9, and ε is zero-mean
Gaussian with 10−2 standard deviation. Figure 1 compares Algorithm 1 against standard Bayesian
optimisation with the same EI function, but using slice sampling to infer the kernel hyper-parameters
(without imposing the theoretical bounds on the hyper-parameters). We see that, in the absence of
reasonable prior beliefs, conditions like the ones detailed in our theoretical results are necessary
to guarantee reasonable sampling of the objective function. While heteroskedastic GP approaches
could mitigate this problem, there are no theoretical results to guarantee this to the best of our
knowledge.

To further evaluate the effectiveness of the proposed approach, we have also applied the proposed
algorithm to standard benchmarks in BO (please refer to [7] for more detailed descriptions). The
results are summarized in Figure 2. In these examples, we used slice sampling to optimise the hyper-
parameters albeit taking only the last sample. Despite using fewer samples, the proposed approach
is competitive against current state of the art approaches.

5 Conclusion

Despite the rapidly growing literature on Bayesian optimisation and the proliferation of software
packages that learn the kernel hyper-parameters, to the best of our knowledge, only Bull [6] and us
have attacked the question of convergence of GP-based Bayesian optimisation with unknown hyper-
parameters. Bull’s results focused on deterministic objective functions. Our new results apply to the
abundant class of noisy objective functions.
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