Using Bayesian Optimization for Hardware Design

Orianna DeMasi Joseph Gonzalez
Computer Science Division Computer Science Division
University of California, Berkeley University of California, Berkeley
odemasi@eecs.berkeley.edu jegonzal@eecs.berkeley.edu
Benjamin Recht James Demmel
Computer Science Division Computer Science Division and Mathematics Department
University of California, Berkeley University of California, Berkeley
brecht@berkeley.edu demmel@berkeley.edu
Abstract

The problem of searching complex spaces with difficult to model or even black-
box functions arises in many domains. One such domain is hardware design in
computer architecture. As hardware and software become more sophisticated, the
importance and difficulty of finding an optimal design increases. We explore the
use of Bayesian optimization on a problem of hardware design. Applying this ap-
proach on an example where traditional methods to optimize blackbox functions
don’t apply, this method outperforms a naive approach in both number of samples
and the quality of the solution found.

1 Introduction

The need to efficiently optimize expensive black box response functions arises in many applications
in system tuning. Examples of these applications include algorithm hyper parameter tuning [1} 2}
3l 4]}, automatic performance tuning of software [3} 16} (7, |8], and hardware design [9} [10} (L1} [12]].
Often in these applications search spaces are far too large to exhaustively enumerate. Even worse, in
many cases these tuning spaces contain discrete dimensions and complex combinatorial constraints.
Finally these spaces will only grow in size and complexity as computer software and hardware
continue to become more sophisticated and heterogenous.

In this work we explore a model based approach to system tuning in the setting of hardware design.
We apply previous work in model based optimization to address the unique challenges of the com-
plex combinatorial structure presented in the context of computer processor design.As with prior
work in Baysian optimization, we simultaneously estimate approximation f (x) of the unknown
black box function f(x) as well as the optimizing configuration x* by evaluating f (i.e., simulating
a processor design) on a sequence of configurations (z1,...,x,). Following previous work, we
assume Gaussian process priors and find they model the space well.

To balance the exploration of the overall space as well as the micro-optimization of particularly
successful hardware configurations, we adopt a Bayesian approach to minimize the number of con-
figurations that must be evaluated. We estimate the uncertainty in the function f and apply both an
upper confidence bounds selection rule and expected improvement selection rule to determine the
sequence of configurations to evaluate.

Using real processor simulation data we demonstrate the applicability and impressive performance

of Bayesian optimization. We show that by simultaneously estimating f and balancing exploration
and exploitation of the hardware design space we can substantially reduce the number of processor

simulations required to achieve a near optimal configuration. In the context of hardware design this
can make a substantial difference in the overall system performance and enable the design of more
complex processors.

2 Background

Computer processor design presents three major challenges to system optimization. First, measur-
ing performance of potential designs is extremely expensive due to cycle-accurate simulations being
many orders of magnitude slower than the final hardware implementations that they simulate. Simu-
lations of even small benchmarks will take hours or even days for a single configuration and multiple
benchmarks must be measured to assess one configuration. Second, design spaces consist of mil-
lions of points. Exhaustive exploration of these spaces is infeasible. The design spaces are discrete
and many rules impose constraints; not all configurations are valid. Finally, even tiny improvements
are necessary, as they have the opportunity to have a large impact over the lifespan of the system.

Much work has been done to make individual simulations cheaper by only simulating sample periods
of a benchmark or using regression techniques to make statistical approximations to the performance
function f(x) [10,11L9]. Another response is to reduce the number of observations needed by using
classical search methods or using domain understanding to guide the search [12].

We propose using Bayesian optimization, which combines global modeling, to prevent termination
at a local optimum, with active sampling to focus on areas needing more sampling. Our work
suggests this is an especially useful approach in that it does not rely on deep domain expertise, so it
is applicable to a variety of applications.

3 Method

As in classical optimization settings, the goal is to optimize a response f(x) over a set of con-

figurations x € X where the space X is a bounded set of possible parameter configurations.

We use a surrogate model f(z|(z;,y;)"_,), which is built on the previously observed n points

x;,2 = 1..n and their measured responses y;,7 = 1...n. The model provides both an approxi-

mation to the performance at any point and a measure of uncertainty. Ideally, we would find the

optimal configuration z* = arg max f(x). In practice, we approximate this point by searching for
x

*

T* = arg max f(x|(z,y:),). It is important to note that our goal is not to build a model that
S

minimizes modeling error over the entire space, but to guide a search towards the optimal point z*.
In this general framework for Bayesian optimization [13] we are left to decide which prior over
functions and which acquisition function to use. In this work, we consider a Gaussian process prior
and both expected improvement and upper confidence bounds for the acquisition function.

3.1 Model - Gaussian processes

Gaussian processes [[14] are a popular prior to assume over functions [1} 2} [13]]. Their generality,
elegance, and uncertainty measure are very attractive in addition to the ability to write down many
closed form expressions for calculations. More formally, a Gaussian process is a collection of ran-
dom variables such that any finite subset has a multivariate distribution. A Gaussian process is fully
defined by its predictive mean and covariance functions and a deeper discussion of their properties
can be found in other resources [14].

3.2 Acquisition function - Expected improvement and upper confidence bounds

There are a variety of popular acquisition functions, most notably, the probability of improvement
[15], expected improvement (EI), and, more recently, upper confidence bounds (UCB) [16]. Here
we consider expected improvement and upper confidence bounds.

First, for Gaussian processes, the expected improvement can be written out in closed form as

BlI(0)] = (1(0) — fnar) (L0201 (1)

where f,,4. is the maximum value observed, ®(z) is the cumulative distribution function, and ¢(x)
the density function of the standard normal. Further, () is the returned prediction from the model
and o(z) is the uncertainty of the model. In this setting, the next point to sample z™¢*? is the one
that maximizes the expected improvement

""" = arg maxE[I(x)]
reX
This method was developed for minimizing a function, so here, where we are maximizing an objec-

tive, we minimized the negative value of the objective value.

We also consider the idea of exploiting upper confidence bounds. With this approach, we choose the

next point to sample by
nexrt

2" = arg max{p(z) + o(x)}.

4 Experimental Setup and Dataset

‘We consider optimizing the performance of micro architectural processor design on a suite of bench-
marks by maximizing the performance of the proposed hardware, as measured in billions of instruc-
tions per second (bips). We consider both optimizing for individual benchmarks, as well as the full
suite by optimizing the average performance across benchmarks. Various points in the design space
have been verified by running simulations. In this experiment, we are constrained to use publicly
available dateﬂ which may now be searched exhaustively at low cost. However, our experiment
shows that collecting just a small subset of this very expensive data would suffice for optimization.
To test each search method, we perform 25 searches randomly initializing the search at a different
point each time. The average performance across these runs (and error bars of standard deviation
when appropriate) is reported.

The open source dataset contains the performance of 2,000 microarchitectural configurations of a
proposed computer processor [L1]. It was previously used in the context of developing regression
models for processor design spaces [[10]. The performance of each configuration is reported for 7
SPEC2k benchmarks (ammp, apple, equake, gcc, gzip, mesa, twolf) and for SPECjbb, a Java server
benchmark. The performance was established via a simulation of a 100 million instruction sub-
sample of the benchmark in Turandot, a parameterized out-of-order superscalar processor simulator
[17] . The static dataset provides an example of a heavily constrained search space. The parameters
of the dataset include pipeline width and depth, number of physical registers, branch reservations
and latency, and the size and latencies of the instruction and data caches. Further description of the
design space can be found in previous work [[10} [11]].

S Empirical Analysis

The results of the search methods are presented in figure [} The horizontal axis is the number of
points that were sampled, or the expense of the search, and the vertical axis is the performance of
the best performing configuration that has been tested thus far, or the success of the searches. We
include randomly sampling points from the space, as random search does surprisingly well in many
applications and is the naive approach. Other classical blackbox optimization methods, including
Nelder Mead and genetic methods, are difficult to apply in this heavily constrained arena, so they
are omitted here due to lack of a fair comparison.

We see in figure[T]that all the Bayesian methods do very well. In a matter of less than 30 observations
they all get remarkably close to finding the optimal point in the dataset or reach it. The figure on
the right has error bars indicating one standard deviation from the average search performance.
The error bars are very tight, indicating that all 25 performed searches achieved very good results
and the average performance is representative of individual searches. Of note is how poor random
sampling does in this application. Here random sampling continues to improve as more of the space
is explored, but the figure has been truncated to highlight the Bayesian methods.

We tried a few variations of the searches, for example changing the correlation kernel from squared
exponential to linear [14]] and varying the autocorrelation value. The search was fairly robust to

'http://people.duke.edu/~bcll5/software.html

http://people.duke.edu/~bcl15/software.html

Performance of search methods 35 Performance of search methods

w
)

N
o)

N
)

=
n

Billions of Cycles per Second (bips)
Billions of Cycles per Second (bips)

=== Optimum
e—e GP-UCB
e—e GP-UCB blacklisting

L0 e—e GP-UCB linear kernel === Optimum
o—e GP-El e—e GP-UCB blacklisting
oo Random oo GP-El

0.5 15

0 5 10 15 20 25 30 6 8 10 12 14 16 18 20
points sampled # points sampled

Figure 1: Performance of search methods with different acquisition functions on average bips across
benchmarks compared with the naive approach. The optimum is the known best solution in the space
and the error bars in the figure on the right indicate standard deviation between trials.

these changes, but there was a significant effect from changing the acquisition function. Using
a direct implementation of UCB the search would get stuck and stop exploring the space. This
could be useful for implementing a stopping heuristic, but as can be seen in figure [I]using UCB the
search would get stuck on a suboptimal point. To get around this, we tried blacklisting observed
configurations and forcing UCB to always sample a new point. This solved the problem and UCB
was then able to reach the optimal solution at the same rate as using the EI criterion.

6 Discussion

There are many applications where the search space is not a perfect hypercube in parameter space,
but instead a warped domain, e.g. unions of hypercubes. These situations arise frequently in com-
plier optimization and computer architecture where the setting of one parameter dictates the exis-
tence or range of other parameters. While our constraints arose from the nature of the dataset, they
present an example of one of these heavily constrained datasets, which the method had no problem
handling, but traditional blackbox optimization methods would have struggled with.

In this example, we looked at optimizing the performance for individual benchmarks and presented
the results of optimizing for a general best performing processor by maximizing the average bips
across benchmarks. The flexible and generalizable approach used permits domain experts to readily
assign alternative, task-appropriate weights to benchmarks. The performance optimizing individual
benchmarks was similar, but often converged to different solutions, implying that different configu-
rations are better for different compute kernels, as expected.

7 Conclusion

In this work we have proposed using Bayesian optimization with a Gaussian process prior for hard-
ware design and studied the performance on a dataset of computer processor microarchitecture
optimization. The Bayesian approach is very general and was able to be applied in the heavily
constrained space that we were working in, where other methods did not have direct applicability.
The search approach performed well by finding a better quality of solution and in fewer function
evaluations than random search.

Acknowledgments

We would like to extend perfuse thanks to Benjamin Lee for generously making his data available
to the public [10,[11] and for his advice. We would also like to thank Krste Asanovic¢ for his sugges-
tions, as well as Christopher Celio, Adam Izraelevitz, and Yunsup Lee for valuable discussions.

References

[1] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of ma-
chine learning algorithms. In Advances in Neural Information Processing Systems, pages
2951-2959, 2012.

[2] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl. Algorithms for hyper-
parameter optimization. In Advances in Neural Information Processing Systems, pages 2546—
2554, 2011.

[3] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In Learning and Intelligent Optimization, pages 507-523.
Springer, 2011.

[4] Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. An evaluation of sequential model-
based optimization for expensive blackbox functions. In Proceeding of the fifteenth annual

conference companion on Genetic and evolutionary computation conference companion, pages
1209-1216. ACM, 2013.

[5] Matteo Frigo and Steven G Johnson. Fftw: An adaptive software architecture for the fft. In
Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International
Conference on, volume 3, pages 1381-1384. IEEE, 1998.

[6] Markus Piischel, José MF Moura, Bryan Singer, Jianxin Xiong, Jeremy Johnson, David Padua,
Manuela Veloso, and Robert W Johnson. Spiral: A generator for platform-adapted libraries of
signal processing alogorithms. International Journal of High Performance Computing Appli-
cations, 18(1):21-45, 2004.

[7] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. Optimizing matrix multiply
using phipac: a portable, high-performance, ansi ¢ coding methodology. In Proceedings of the
11th international conference on Supercomputing, pages 340-347. ACM, 1997.

[8] R Clint Whaley and Jack J Dongarra. Automatically tuned linear algebra software. In Pro-
ceedings of the 1998 ACM/IEEE conference on Supercomputing, pages 1-27. IEEE Computer
Society, 1998.

[9] Engin Ipek, Sally A McKee, Karan Singh, Rich Caruana, Bronis R de Supinski, and Martin
Schulz. Efficient architectural design space exploration via predictive modeling. ACM Trans-
actions on Architecture and Code Optimization (TACO), 4(4):1, 2008.

[10] Benjamin C Lee and David M Brooks. Accurate and efficient regression modeling for microar-
chitectural performance and power prediction. In ACM SIGPLAN Notices, volume 41, pages
185-194. ACM, 2006.

[11] Benjamin C Lee and David M Brooks. A tutorial in spatial sampling and regression strategies
for microarchitectural analysis. IEEE Micro Special Issue on Hot Tutorials, 27(3):74-93, 2007.

[12] Sandeep Navada, Niket K Choudhary, and Eric Rotenberg. Criticality-driven superscalar de-
sign space exploration. In Proceedings of the 19th international conference on Parallel archi-
tectures and compilation techniques, pages 261-272. ACM, 2010.

[13] Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on bayesian optimization of ex-
pensive cost functions, with application to active user modeling and hierarchical reinforcement
learning. CoRR, abs/1012.2599, 2010.

[14] Carl Edward Rasmussen. Gaussian processes for machine learning. 2006.

[15] Harold J Kushner. A new method of locating the maximum point of an arbitrary multipeak
curve in the presence of noise. Journal of Fluids Engineering, 86(1):97-106, 1964.

[16] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian pro-
cess optimization in the bandit setting: No regret and experimental design. arXiv preprint
arXiv:0912.3995, 2009.

[17] Mayan Moudgill, J-D Wellman, and Jaime H Moreno. Environment for powerpc microarchi-
tecture exploration. Micro, IEEE, 19(3):15-25, 1999.

	Introduction
	Background
	Method
	Model - Gaussian processes
	Acquisition function - Expected improvement and upper confidence bounds

	Experimental Setup and Dataset
	Empirical Analysis
	Discussion
	Conclusion

