
Batch Bayesian Optimization via Local Penalization

Javier González
Department of Computer Science

University of Sheffield
j.h.gonzalez@sheffield.ac.uk

Zhenwen Dai
Department of Computer Science

University of Sheffield
z.dai@sheffield.ac.uk

Philipp Henning
MPI for Intelligent Systems

Tubingen, Germany
phennig@tuebingen.mpg.de

Neil D. Lawrence
Department of Computer Science

University of Sheffield
n.lawrence@sheffield.ac.uk

Abstract

Most proposed Bayesian optimization approaches only allow the exploration of
the parameter space to occur sequentially. In this work we we investigate a
highly effective heuristic for batch Bayesian optimization based on an estimate
of the function’s Lipschitz constant that captures the most important aspect of
this interaction—local repulsion—at negligible computational overhead. A pe-
nalized acquisition function is used to collect batches of points minimizing the
non-parallelizable computational effort. The resulting algorithm compares very
well, in run-time, with much more elaborate alternatives.

1 Introduction
The task is to solve the global optimization problem of finding xM = argmaxx∈X f(x).We assume
that f is a black-box from which only perturbed evaluations of the type yi = f(xi) + εi, with
εi ∼ N (0, σ2), are available. We will assume that the objective of interest can be described well by
a L-Lipschitz continuous function f : X → IR defined on a compact subset X ⊆ IRd. In sequential
BO the goal is to make a series of evaluations x1, . . . ,xN of f such that the maximum of f is
evaluated as quickly as possible. To this end, a surrogate probabilistic model for f is calculated.
This is typically a Gaussian Process (GP) p(f) = GP(µ; k) with mean function µ and a covariance
function k. The posterior of the GP is used to form the acquisition function α(x; In), where In
represents the available data set Dn and the GP structure (kernel, likelihood and parameter values)
when n data points are available. The next evaluation is placed at the (numerically estimated) global
maximum xn+1 of this acquisition function [14, 13, 10, 11].

In this work, we focus on cases in which the cost of evaluating f in a batch of points of size nb is the
same as evaluating f in a single point. Such scenarios appear, for instance, in the optimization of
computer models where several cores are available to run in parallel, or in wet-lab experiments when
the cost of testing one experimental design is the same as testing a batch of them. In these settings,
the set of available pairs {(xi, yi)}ni=1 can be augmented with the evaluations of f on batches of
nb data points Bnb

t = {xt,1, . . . ,xt,nb}, for t = 1, . . . ,m, rather than on single observations. The
goal of any batch criterion is to build a batch by mimicking the decisions that would be made under
the equivalent (optimal) sequential policy. Consider the choice of selecting xt,k, the k-th element
of the t-th batch: the decision about where to collect xt,k has to incorporate the uncertainty about
the locations xt,1, . . . ,xt,k−1, and the outcomes of the evaluation of f there, which is intractable
even for small batch-sizes, due to the optimization-marginalization loop required to obtain xt,k. The
literature has tried to avoid this computational burden by means of different strategies [15, 6, 3, 2, 4,
5, 9, 1, 7, 12] most of which requiere to update the GP after each element in the batch is collected.
Unfortunately, this has computational overhead of O(n3).

1

10 5 0 5 10
x

0

1

2

3

4

5

6

7

8

9

va
lu

e

1st batch element
α(x)

10 5 0 5 10
x

0

1

2

3

4

5

6

7

8

9

va
lu

e

2nd batch element
α(x)

α(x)ϕ1 (x)

ϕ1 (x)

10 5 0 5 10
x

0

1

2

3

4

5

6

7

8

9

va
lu

e

3th batch element
α(x)ϕ1 (x)

α(x)ϕ1 (x)ϕ2 (x)

ϕ2 (x)

Figure 1: Illustration of three iterations of the maximization-penalization loop. The main task of
good batch design is to explore the modes of the acquisition function, achieved by iterative maxi-
mization (black stars) and penalization (using ϕ1(x), ϕ2(x)) of the acquisition function α(x).

The motivation of this work is to develop a heuristic for batch BO at lower computational cost,
while incorporating information about global properties of f from the GP model into the batch
design. Our approach rests on the hypothesis that f is a Lipschitz continuous function1, which is a
common assumption in global optimization [8]. As explained below, the information provided by
the Lipschitz constant can be used to define policies to collect a batch of points multiple steps ahead
without evaluating f , by mimicking the hypothesized behavior of a sequential policy.

2 Maximization-Penalization Strategy for Batch Design
The intuition behind our approach is that for most GP priors in practical use for BO, the dominant
effect of a function evaluation on the acquisition function is a local exclusion around the new eval-
uation. This shape of the acquisition function will be modeled through the Lipschitz properties of
f , to distribute the elements in each batch. This should be understood as a heuristic to the shape of
α(x; It,k−1) if all previous observations were available, mimicking the effect a sequential policy.

In the sequel we will say that a function ϕ(x;xj), x ∈ X , is a local penalizer of a generic ac-
quisition function α(x) at xj if ϕ(x;xj) is differentiable, 0 ≤ ϕ(x;xj) ≤ 1 and ϕ(x;xj) is an
non-decreasing function in ‖x−xj‖. We propose to replace the maximization-marginalization loop
required in batch BO by a maximization-penalization strategy: while the optimization is carried out
in a similar fashion, the marginalization step is replaced by the direct penalization of α(x; It,k−1)
around its most recent maximum, i.e, the previous batch element. Figure 1 gives a graphical illus-
tration. The maximization-penalization strategy selects xt,k as

xt,k = argmax
x∈X

g(α(x; It,0))
k−1∏
j=1

ϕ(x;xt,j)

 , (1)

where ϕ(x;xt,j) are local local penalizers centered at xt,j and g : IR → IR+ is a differentiable
transformation of α(x) that keeps it strictly positive without changing the location of its extrema.
Here, we will use the soft-plus transformation g(z) = ln(1+ez). This does not require to re-estimate
the GP model after each location is selected, just a new optimization of the penalized utility.

The effect of a local penalizer is to smoothly reduce the value of the acquisition function in a neigh-
borhood of xj . A ‘good’ local penalizer centered at xj should reflect the belief about the distance
from xj to xM : If we suspect that xM is far from xj , a broad ϕ(x;xj) will discard a large portion
of X in which we don’t need to collect any sample. On the other hand, if we believe that xM and
xj are close, ideally we want to minimize the penalization of α(x) and keep collecting samples is a
close neighborhood. This local penalization mimics the acquisition function’s dynamics under a se-
quential policy in the following sense: the modes of the acquisition functions correspond to regions
in which either µn(x) or σ2

n(x) (or both) are large. Evaluating, for instance, where σn(x) is large
will reduce uncertainty in that region, decreasing α(x) in a neighborhood. The functions ϕ(x;xj)
are surrogates for this neighborhood.

1f : X → IR on a compact subset X ⊆ IRd of the d-dimensional real vector space is said to be L-Lipschitz
if it satisfies |f(x1)− f(x2)| ≤ L‖x1 − x2‖, ∀ x1,x2 ∈ X where L is a global positive constant, and ‖ · ‖ is
the `2-norm on Rd

2

Algorithm 1 Batch Bayesian Optimization with Local Penalization (BBO-LP)
Input: dataset D1 = {xi, yi}ni=1, batch size nb, iteration budget m, acquisition transformation g.
for t = 1 to m do

Fit a GP to Dt and build the acquisition function α(x, It,0) using the current GP.
Take α̃t,0(x)← g(α(x, It,0)) and L̂← maxX ‖µ∇(x)‖
for j = 1 to nb do

1. Maximization-step: xt,j ← argmaxx∈X {α̃t,j−1(x)}.
2. Penalization-step: α̃t,j(x)← α̃t,0(x)

∏k
j=1 ϕ(x;xt,j , L̂).

end for
Bnb
t ← {xt,1, . . . ,xt,nb

}.
yt,1, . . . , yt,nb

← Parallel evaluations of f at Bnb
t .

Dt+1 ← Dt ∪ {(xt,j , yt,j)}nb
j=1.

end for
Returns: x̂M = argmaxx∈X {µ(x)}.

2.1 Choosing Local Penalizers ϕ(x;xj)

We now construct penalizing functions ϕ(x;xj) that incorporate into α(x) the current belief about
the distance from the batch locations to xM . Take M = maxx∈X f(x), and a valid Lipschitz
constant L. Consider the ball Brj (xj) = {x ∈ X : ‖xj − x‖ ≤ rj} where rj = (M − f(xj))/L.
To simplify the notation we write rj = r(xj) for the radius of the ball around xj . If f is the true
optimization objective, then xM /∈ Brj (x)—otherwise the Lipschitz condition would be violated.
The size of Brj (xj) depends on L, M and the value of f at xj . Both large variability in f (large L)
and proximity of f(xj) to the optimum M shrink Brj (xj).

In the BO context, under the assumption f(x) ∼ GP(µ(x), k(x,x′)), we choose ϕ(x;xj) as the
probability that x, any point in X that is a potential candidate to be a maximum, does not belong
to Brj (xj): ϕ(x;xj) = 1 − p(x ∈ Brj (xj)). The functions ϕ(x;xj), that can be computed in
closed form, thus create exclusion zones whose size is governed by L. If µn(xj) is close to M ,
then ϕ(x;xj) will have a smaller and more localized effect on α(x) (a smaller exclusion area). On
the other hand, if µn(xj) is far from M , ϕ(x;xj) will produce a wider yet less intense correction
on α(x). The value of L also affects the size of the effect of ϕ(x;xj) on α(x), decreasing it as L
increases. Of course, the values of M and L are unknown in general. To approximate M , we take
M̂ = maxi{yi}. We approximate L by taking L∇ = maxx∈X ‖∇f(x)‖ for ∇f(x) the gradient of
the GP at x.

3 Experimental Section
We perform (i) a simulation in which the performance of the algorithms is compared for a fixed
time budget across different problem dimensions, batch sizes and acquisition functions and (ii) a
comparison of the running time in two objective functions with different evaluation costs. In all the
experiments the exponentiated quadratic (EQ) covariance k(x,x′) = θ exp(−γ‖x−x′‖2), θ, γ > 0
is used in the GP model. The parameters of the GP are optimized by maximizing the marginal
likelihood from the best of 10 random initializations. The results are taken over 20 replicates with
different initial values. All the simulations were done on Amazon EC2 servers with Intel Xeon
E5-2666 processors and 2 virtual CPUs except the SVR tuning with 16 virtual CPUs.

We label the methods used by means of the batch design type followed by the acquisition used: Rand
is used when the first element in the batch is collected maximizing the acquisition and the remaining
ones randomly, B and PE are the exploratory approaches in [15] and [6], Pred is used in cases when
the model is used to generate ‘fake’ batch obervations as in [3], SM identifies the simulating and
matching method [1] and LP stands for our local penalization method 2. The multi-point expected
improvement [5] is denoted by qEI. Two acquisition functions are used: the expected improvement
(EI) and the Upper Confidence Bound (UCB). To run the B, PE, SM, methods, we use the available
MATLAB code3. The implementation of these methods optimize f by searching its optimum in a
fine grid, which is an advantage computationally but a drawback in terms of precision. The qEI

2https://github.com/SheffieldML/GPyOpt.
3http://econtal.perso.math.cnrs.fr/software/

3

0 5 10 15 20 25 30

No. collected batches

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

B
e
st

 f
o
u
n
d
 v

a
lu

e

EI

UCB

Rand-EI

Rand-UCB

SM-UCB

B-UCB

PE-UCB

Pred-EI

Pred-UCB

qEI

LP-EI

LP-UCB

(a) Results for the Cosines objective.

0 5 10 15 20 25 30

No. collected batches

5.066

5.064

5.062

5.060

5.058

5.056

5.054

5.052

5.050

B
e
st

 f
o
u
n
d
 v

a
lu

e

EI

UCB

Rand-EI

Rand-UCB

SM-UCB

B-UCB

PE-UCB

Pred-EI

Pred-UCB

LP-EI

LP-UCB

(b) Results for the wet-lab objective.

Figure 2: Results for the two functions used in the experimental section of this work. Geometric
figures on top of the lines represent the moments in which the batches are evaluated.

d nb EI UCB Rand-EI Rand-UCB SM-UCB B-UCB

2
5

0.31±0.03 0.32±0.06
0.32±0.05 0.31±0.05 1.86±1.06 0.56±0.03

10 0.65±0.32 0.79±0.42 4.40±2.97 0.59±0.00
20 0.67±0.31 0.75±0.32 - 0.57±0.01

5
5

8.84±3.69 11.89±9.44
9.19±5.32 10.59±5.04 137.2±113.0 6.01±0.00

10 1.74±1.47 2.20±1.85 108.7±74.38 3.77±0.00
20 2.18±2.30 2.76±3.06 - 2.53±0.00

10
5

559.1±1014 1463±1803
690.5±947.5 1825±2149 9e+04±7e+04 2098±0.00

10 200.9±455.9 1149±1830 9e+04±1e+05 857.8±0.00
20 639.4±1204 385.9±642.9 - 1656±0.00

d nb PE-UCB Pred-EI Pred-UCB qEI LP-EI LP-UCB

2
5 0.99±0.74 0.41±0.15 0.45±0.16 1.53±0.86 0.35±0.11 0.31±0.06
10 0.66±0.29 1.16±0.70 1.26±0.81 3.82±2.09 0.66±0.48 0.69±0.51
20 0.75±0.44 1.28±0.93 1.34±0.77 - 0.50±0.21 0.58±0.21

5
5 123.5±81.43 10.43±4.88 11.77±9.44 15.70±8.90 11.85±5.68 10.85±8.08
10 120.8±78.56 9.58±7.85 11.66±11.48 17.69±9.04 3.88±4.15 1.88±2.46
20 98.60±82.60 8.58±8.13 10.86±10.89 - 6.53±4.12 1.44±1.93

10
5 2e+05±2e+05 793.0±1226 1412±3032 - 1881±1176 1194±1428
10 6e+04±8e+04 442.6±717.9 1725±3205 - 1042±1562 100.4±338.7
20 5e+04±4e+04 1091±1724 2231±3110 - 1249±1570 20.75±50.12

Table 1: Results for the gSobol function across different dimensions, batch sizes and methods. For
each algorithm, the mean and standard deviation are shown. Best results among the batch methods
are highlighted in bold. ‘-’ represents that the method could not complete the first iteration within
the time budget. The value of f at the minimum is always zero.

was taken from the R-package DiceOptim4. Unless specified otherwise, the default implemented
settings of all the previous methods are used.

Table 1 shows the results for the gSobol function5 for dimensions d = 2, 5, 10 and batch sizes,
nb = 5, 10, 20. For methods using the UCB, κ was fixed to 2, which allows us to compare the
different batch designs using the same acquisition function. For dimension 2, 5 and 10, we use
a time budget of 1, 5 and 10 mins. respectively. The overall best technique is the LP-UCB, that
achieves the best results in 5 of the 9 cases. It is also notable that it exhibits fairly small standard
deviations compared with the rest of the methods and it is coherent accumulating information about
the optimum of f in terms of the batch size: as nb increases the results are consistently better.
Figure 2 shows the comparison of the methods in two scenarios in terms of the running time. The
first experiment uses the function f(x) = 1−

∑2
i=1(g(xi)− r(xi)) where g(xi) = (1.6xi − 0.5)2

and r(xi) = 0.3 cos(3π(1.6xi − 0.5)) in [0, 5]2. The second experiment is motivated by a wet-lab
experimental design. We work with a surface that emulates the performance of mammalian cells in
protein production. The function has dimension 71 and it is moderately expensive to evaluate since
it corresponds to the predictive mean of a GP trained over 1,500 data instances6. In both experiments
the Local penalization approach shows the best performance.

4http://cran.r-project.org/web/packages/DiceOptim/index.html
5See http://www.sfu.ca/ ssurjano/gfunc.html.
6The qEI was not used in this experiment due to the dimensionality of the problem

4

4 Discussion
We have investigated a new heuristic for batch BO, BBO-LP, that significantly reduces the compu-
tational burden of non-parallelizable tasks. The resulting method can be used with any acquisition
function and it is able to make fast and appropriate decisions about the locations where f should
be evaluated. When the batch evaluations of f are parallelizable this is an important advantage,
meaning that they don’t lead to considerable additional computational overhead.

References
[1] Javad Azimi, Alan Fern, and Xiaoli Fern. Batch Bayesian optimization via simulation matching. In

Advances in Neural Information Processing Systems, pages 109–117, 2010.

[2] Javad Azimi, Ali Jalali, and Xiaoli Fern. Dynamic batch Bayesian optimization. CoRR, abs/1110.3347,
2011.

[3] Javad Azimi, Ali Jalali, and Xiaoli Zhang Fern. Hybrid batch Bayesian optimization. In Proceedings of
the 29th International Conference on Machine Learning, 2012.

[4] James Bergstra, Rémy Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. In NIPS’2011, 2011.

[5] Clment Chevalier and David Ginsbourger. Fast computation of the multi-points expected improvement
with applications in batch selection. In Giuseppe Nicosia and Panos M. Pardalos, editors, LION, volume
7997 of LNCS, pages 59–69. Springer, 2013.

[6] Emile Contal, David Buffoni, Alexandre Robicquet, and Nicolas Vayatis. Parallel Gaussian process opti-
mization with upper confidence bound and pure exploration. CoRR, abs/1304.5350, 2013.

[7] Thomas Desautels, Andreas Krause, and Joel W. Burdick. Parallelizing exploration-exploitation trade-
offs with Gaussian process bandit optimization. In Proceedings of the 29th International Conference on
Machine Learning, 2012.

[8] Christodoulos A. Floudas and Panos M. Pardalos, editors. Encyclopedia of Optimization, Second Edition.
Springer, 2009.

[9] P. I. Frazier. Parallel global optimization using an improved multi-points expected improvement criterion.
In INFORMS Optimization Society Conference, Miami FL, 2012.

[10] Philipp Hennig and Christian J. Schuler. Entropy search for information-efficient global optimization.
Journal of Machine Learning Research, 13, 2012.

[11] José M. Hernández-Lobato, Matthew W. Hoffman, and Zoubin Ghahramani. Predictive entropy search
for efficient global optimization of black-box functions. In Advances in Neural Information Processing
Systems 27, pages 918–926. Curran Associates, Inc., 2014.

[12] Ali Jalali, Javad Azimi, Xiaoli Fern, and Ruofei Zhang. A lipschitz exploration-exploitation scheme for
Bayesian optimization. In Machine Learning and Knowledge Discovery in Databases, pages 210–224,
2013.

[13] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.

[14] Michael Osborne. Bayesian Gaussian Processes for Sequential Prediction, Optimisation and Quadrature.
PhD thesis, PhD thesis, University of Oxford, 2010.

[15] Matthias Schonlau, William J. Welch, and Donald R. Jones. Global versus local search in constrained
optimization of computer models, volume Volume 34 of Lecture Notes–Monograph Series, pages 11–25.
Institute of Mathematical Statistics, Hayward, CA, 1998.

5

