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Abstract

We use Bayesian optimization methods to design games that maximize user en-
gagement. Participants are paid to try a game for several minutes, at which point
they can quit or continue to play voluntarily with no further compensation. En-
gagement is measured by both actual play duration and a projection users make
about how long others will play. Using Gaussian process surrogate-based opti-
mization, we conduct efficient experiments to identify game design characteris-
tics that lead to maximal engagement. In this paper, we study a game requiring
trajectory planning, the difficulty of which is determined by a three-dimensional
continuous design space. Two of the design dimensions manipulate the game in a
user-transparent manner (e.g., the spacing of obstacles), the third in a covert man-
ner (subtle trajectory corrections). Converging results indicate that covert manipu-
lation is significantly more effective in driving engagement, suggesting the critical
role of a user’s self-perception of competence.

1 Introduction

A recent surge of research has applied game-like mechanics to enhance engagement in domains
such as personal health [6, 8], scientific discovery [9} 4], and education [5, [12} [11} [10]. Increased
engagement should improve user experiences, data collection, and outcomes. Engagement can be
readily quantified using electronic games. Using educational games as an example, one can measure
the fraction of time students are attending to the screen [13], the rate of responses [1]], the number of
attempts to solve a problem, and a persistent focus on a single task [10]. All these measures relate to
the user spending more time on task, which should ultimately yield better learning outcomes. The
goal of our work is to design games that maximize engagement for a population of users via the
manipulation of task difficulty or challenge. In the past, design decisions have been made with a
designer’s intuitions, A/B testing, or multiarm bandits. We use Bayesian optimization with Gaussian
processes (GPs). In our application, the GP posterior represents a mapping from game designs to
latent engagement states induced by a design. We must specify an observation model that character-
izes the generative process by which an engagement state translates to a voluntary-play duration.

2 Bayesian Optimization

In this section, we identify an observation model that is robust to misspecification: we would like
the model to work well even if real-world data—engagement as measured by the duration of play—
are not distributed according to the model’s assumptions. An observation model must have three
properties to be suitable for representing play-duration distributions: (1) nonnegative support, (2)
variance that increases with the mean, and (3) probability mass at zero to represent individuals
who express no interest in voluntary play. To satisfy these three properties, our generative process
assumes that play duration, denoted V, is given by V' = CT, where C|r ~ Bernoulli(7) is an
individual’s binary choice to continue playing or not and 7' is the duration of play if they continue.
Criterion 1 rules out the popular ex-Gaussian density because it has nonzero probability for negative
values. We tested four alternative distributional assumptions for 7":
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where x is a game design and f(x) is the latent valuation and has a GP prior. The first parameter of
the Gamma, Weibull, and Wald distributions specify the shape, and the second parameter specifies
the rate, scale, and mean, respectively. The two parameters of the log-Normal distribution specify
the mean and variance, respectively. These four distributions all share the same mean, e/(®), but
have different higher-order moments. To allow a design’s valuation f(x) to influence the choice
C' as well as the play duration T, we define logit(7) = Sy + (1 f(x). This general form includes
design invariance as a special case (51 = 0).

We performed synthetic experiments with each of these four observation models. To evaluate ro-
bustness to misspecification, we evaluated each model using the same four models to simulate the
underlying generative process (i.e., to generate synthetic data meant to represent human play dura-
tions). Synthetic data for these experiments were obtained by probing a valuation function, f(x),
that represents the engagement associated with a design x. For f(x), we used a mixture of two
to four Gaussians with randomly drawn centers, spreads, and mixture coefficients, defined over a
2D design space. For examples, see Figure [[h. We generate synthetic observations by mapping
the function value through the assumed generative process. The goal of Bayesian optimization is
to recover the function optimum from synthetic data. We performed 100 replications of the simu-
lated experiment, each with a different randomly drawn mixture of Gaussians and with 8y = 0 and
(1 = 1. For the generative models, we need to assume values for the free parameters, and we used
a=2,k=2,0%=1and \ = 4. (These parameters settings are used to generate the synthetic data
and are not shared with the Bayesian optimization method.)

To perform Bayesian optimization, we require an active-selection policy that determines where in
design space to probe next. The probability of improvement and expected improvement policies are
popular heuristics in the Bayesian optimization literature. Both policies balance exploration and
exploitation without additional tuning parameters. However, since the variance increases with the
mean in our observation models, both policies tend to degenerate to pure exploitation. Instead, we
chose Thompson sampling [3], which is not susceptible to this degeneracy. For each replication of
the simulated experiment, we ran 40 active selection rounds with 5 observations (simulated subjects)
per round. The GP used the squared exponential Automatic-Relevance-Determination (ARD) kernel
whose hyperparameters were inferred by slice sampling.

For each combination of the four distributions as observation model and for each combination of
the four distributions as generative model, we ran the battery of 100 experiment replications each
with 200 simulated subjects. The simulation results are summarized in Figure [I[p. By two mea-
sures of performance, the log-Normal distribution is most robust to incorrect assumptions about the
underlying generative process. We use this observation model in the human studies that follow.
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Figure 1: (a) Examples of the 2D functions used for generating synthetic data. (b) Results of syn-
thetic experiment. The left and right plots depict the mean function value (higher is better) and the
mean distance to the true optimum (lower is better) for various observation models. Results are
averaged over four different generative-process models, 100 replications of each simulation, the last
10 trials per replication. Error bars indicate 1 standard error. (c) Flappy Bird: The player flaps
bird’s wings to keep it aloft and to avoid hitting pipes.



3 Experiments

Our human studies were conducted using Amazon’s Mechanical Turk platform. Given evidence
from earlier studies that Turk participants are willing to voluntarily commit time to activities that
they find engaging, we devised a method for measuring voluntary time on activity or VTA. In each
of our experiments, participants are required to play a game for sixty seconds. During the manda-
tory play period, a clock displaying remaining time is displayed. When the mandatory play period
ends, the clock is replaced by a button that allows the participant to terminate the game and and
receive full compensation. Participants are informed that they can continue playing with no further
compensation. The experiential VTA is measured as the lag between the button appearance and the
button press. After clicking the button, participants were told their experiential VTA and asked to
enter how long they expected other players to voluntarily play. We call this measure the projected
VTA and we use it exclusively in this work as the measure of engagement because our earlier pilot
studies showed that it is a smoother version of the experiential VTA.

A specific research question we address in this experiment is whether covert manipulation of diffi-
culty is more effective in engaging users than overt manipulations—those of which users are fully
aware and to which they can attribute causal effects. Covert manipulations can be used to make a
task more difficult than the user believes, but also to make a task easier than the user believes.

We studied Flappy Bird, a simple popular trajectory-planning game whose objective is to keep a bird
in the air by flapping its wings to resist gravity and avoid hitting vertical pipes or the top/bottom of
the screen (Figure [T). We manipulated two overt factors affecting game difficulty—the horizontal
spacing between pipes and the vertical gap between pipes—as well as one covert factor, which we
refer to as the assistance. Assistance acts as a force that, when the wings are flapped, steers the bird
toward the gap between the next pair of pipes. The assistance level can be adjusted to range from no
assistance whatsoever to essentially a guarantee that nearly any action taken by the player will result
in success. For moderate levels of assistance, the manipulation can be quite subtle. In informal
testing, players were unaware that the game dynamics were modulating to guide them along.

We conducted two studies with Flappy Bird. In the first study, we tested 958 participants. Each
participant was assigned to a random point in the three dimensional, continuous design space. The
large number of participants in this random-assignment experiment enabled us to fit an accurate
model that characterizes the relationship between the game design and latent engagement. In the
second study, we ran the experiment again from scratch and tested 201 participants. Participants
were assigned to designs chosen by Thompson sampling. We seeded active-selection by assigning
the first 55 participants to a Sobol-generated set of random points in design space. Here we included
a short questionnaire about the participant’s experience in the game. The questionnaire consisted of
6 true/false items with each item phrased such that “true” corresponds to an engaging game. Four
phrases in the questionnaire were taken from the Game Engagement Questionnaire [2].

Among participants in the active-selection study, the mean experiential VTA is 10 sec, with SD 42
sec and range 0-298 sec; 20% of participants chose to play beyond the requirement. The mean
projected VTA is 23 sec, with standard deviation 33 sec and range 0—199 sec; 84% of participants
projected that others would continue playing beyond the requirement.

Figures 2 and [2p show the model posterior mean VTA over the three dimensional design space in
the random-assignment and active-selection studies, respectively. The reassuring finding is that the
two independent studies yield very similar outcomes: the optimal design identified by the two studies
is in almost exactly the same point in design space (the red squres in the Figures). The random-
assignment study should yield reliable results due to the relatively large number of participants
tested. The active-selection study is far more efficient in its use of participants, due to intelligent
selection of where to explore in design space. In both studies, the peak design is predicted to obtain
a VTA of 30 seconds—an increase of 50% of the time on task. Because Turk workers are paid by the
task, this time increase reduces the pay rate by two thirds, a fairly clear indication of engagement.

The Figures indicate that engagement is sensitive to each dimension the design space with not much
hint of an interaction across the dimensions. Notably, with no covert assistance—the leftmost array
in each Figure—the other two overt difficulty dimensions have little or no impact on engagement,
and are not sufficient to motivate participants to continue playing voluntarily. Thus, we conclude that
covert assistance is key to engaging our participants. Consistent with the hypothesis that participants



need to be unaware of the assistance, the experiments show that engagement is poor with maximum
assistance—the rightmost array in each Figure. With maximum assistance, the manipulation causes
the bird to appear to be pulled into the gap, and this is therefore no longer covert in nature.

To obtain further converging evidence in support of the optimum identified in Figures [Za and [2p,
we fitted a Gaussian process model to questionnaire scores. We defined the score as the number of
’true’ responses made by the participant. The higher the score, the higher the engagement because
we phrased questionnaire items such that an affirmative response indicated engagement. We used
Gaussian process regression with a binomial observation model to fit the scores. Figure 2k shows
the model posterior mean score over the three dimensional design space. The notable result here
is that the posterior mean score looks similar to the posteriors from the random-assignment and
active-selection studies. More importantly, the predicted design optima, denoted by red squares, lie
close to one another in Figures [, Zb and [Zk. The consistency across studies and across response
measures provides converging evidence that increase our confidence in the experiment outcomes,
and also provide support for the appropriateness of using VTA as measure of engagement in place
of a more traditional questionnaire.

4 Discussion

We have applied Bayesian optimization with a suitable generative theory to the problem of designing
software to engage users. A key component of the research described in this article is our exploration
of candidate generative theories, and a contribution of our work is the specification of a theory that
is robust to misspecification, i.e., robust to the possibility that humans behave differently than the
theory suggests. We collected behavioral and self-reported measures of engagement and obtained
converging evidence from these two different measures. We also showed that covert manipulation of
game dynamics had the most impact on engagement which we believe is due to players attributing
in-game success to their own competence. In future research, we plan to conduct longer-term usage
studies and to apply Bayesian optimization to specific users rather than populations.
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Figure 2: Bayesian model fits of VTA (in seconds) over the Flappy Bird design space for (a) the
random-assignment and (b) active-selection studies. Each array corresponds to a fixed level of
assistance, from no assistance (level 0) to maximal (level 1). Each array depicts model-fit VTA
across the range of horizontal spacings between pipes (x axis) and vertical gaps (y axis). Pipe gap
and pipe spacing is calibrated such that a level of 0 is a challenging game and 1 is readily handled
by a novice. The circles correspond to observations with the radii indicating the magnitudes of
the observations. At locations with multiple observations, there are co-centric circles. Red squares
indicate the locations of the predicted global maximum. (c) An analogous Bayesian model fit to
the questionnaire score, which indicates the number of items with an affirmative response. Higher
scores indicate greater engagement.
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