
Adaptive Bayesian Optimisation for
Online Portfolio Selection

Favour M. Nyikosa, Michael A. Osborne and Stephen J. Roberts
Department of Engineering Science

University of Oxford
{favour,mosb,sjrob}@robots.ox.ac.uk

Abstract

We present a Bayesian approach for online portfolio selection, a fundamental
problem in computational finance. We pose the problem as the global optimi-
sation of an expensive, time-varying, black-box function. As the optimum is itself
dynamic, we use a model that allows us to capture time-dependent patterns of
the function and to provide sequential decision processes that enable us to select
optimal portfolios to invest in an online manner.

1 Introduction

Portfolio selection is the allocation of wealth across a set of assets with the goal of achieving some
objectives. In this work, we are interested in the real-world portfolio selection task which involves
the sequential allocation of wealth over multiple investment periods.

Our problem is choosing optimal allocations of wealth in a dynamic financial market. This is char-
acterised by the feature that the relevant optimal portfolios evolve over time because the underlying
market that affects our model of the problem is changing in time. This environment requires an
agent to repeatedly select optimal portfolios in order to adapt to the market. This leads to the man-
ifestation of a sequential decision problem where each decision in that chain is an optimal decision
acclimatising to the environment’s state at that point.

We tackle this problem by treating the function modelling this dynamic environment as a black-
box. We fold the time information from our observations into this black-box model, which we will
henceforth call the objective function. Gaussian process (GP) inference machinery is employed to
give us the flexibility of folding in much prior domain knowledge into the objective function’s model.
Using Bayesian optimisation (BO) [1–5] we automatically balance the exploration and exploitation
tradeoff to carefully select the varying maximisers over time. This model allows us to capture time-
dependent patterns of the function. We take a non-Markov approach and assume that the changes
in the function are caused by a temporally increasing data stream associated with the objective
function. BO is used to find where the optimum will be a short time into the future. We are unaware
of sequential BO or active-learning criteria that are specifically designed for the type of problem
considered in this paper.

The rest of the paper is structured as follows. Sections 2 and 3 describe the setting of the problem
and the related work. Section 4 delineates the prescribed framework to address it. Section 5 gives
the empirical results and analysis of our suggested approach in online portfolio selection. Section 6
gives conclusions.
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2 Problem setting

Our formalisation of the problem is based on the survey on online portfolio selection in [6] and is
outlined in algorithm 1. We invest our wealth overm assets in the market for a sequence of n trading
periods. The price changes (returns) are represented by a return vector rt ∈ Rm+ , t = 1, ..., n, where
the ith element of tth return vector, rt,i, denotes the ratio of tth closing price to last closing price for
the ith asset. Thus, an investment in asset i in period t increases by a factor of rt,i. We are interested
in a fixed time horizon so the market window R that starts from period 1 to n is Rn1 = {r1, ..., rn}.

Algorithm 1 Online Portfolio Selection Framework

Input: Rn1 historical asset return data
Output: Sn, final cumulative wealth

Procedure:
Initialisation: x = 1

m , S0 = 1
for t = 1, 2, ...n do

Agent learns portfolio xt
Market reveals returns rt
Portfolio incurs period return st = x>rt
Update cumulative return St = St−1 × (x>t rt)
Agent updates portfolio selection model

end for

At the beginning of the tth period, an in-
vestment is specified by a portfolio vec-
tor xt, our decision variable. We assume
a portfolio is self-financed and no short-
selling is allowed. Therefore, every entry
of x is non-negative and all sum up to one.

We use the dynamic function prior to
model the objective function f : (x, t) 7→
R that maps x at time t to some gained
wealth. Then BO is used with some
heuristics to find the optimal xt. The port-
folio xt is scored using the portfolio period
return x>t rt. This procedure is repeated

until period n and the strategy is finally scored according to the portfolio cumulative wealth Sn.

We also make the following domain-specific assumptions: (i) Transaction cost: no transaction costs
or taxes in the model; (ii) Market liquidity: one can buy and sell any quantity of any asset in its
closing prices; (iii) Impact cost: market behaviour is not affected by any portfolio selection strategy.

3 Related work

Table 1 shows the general classification of the state-of-the-art online portfolio selection algorithms
and their corresponding representative references. For this work, we use Bayesian optimisation (see
[1–3, 5, 19]) with the multi-points EI (qEI) (see [20, 21]).

4 Adaptive Bayesian optimisation (ABO)

4.1 Dynamic function prior model for online portfolio selection

Let us consider an unknown function y = f(x, t;Dt) that we wish to optimise for a decision process
where y, t ∈ R and x ∈ X ⊂ RN . The value of the function f associated with the decision
variable x at time t is also dependent on a data stream Dt = {d1, ..., dt}. In portfolio selection,
this corresponds to the asset returns per investment period. For every time step, Dt is updated
Dt = Dt−1∪dt. However, we often do the optimisation of f for a particular future time t+ν. If the
present time is t, then we have only observed Dt. Thus, to optimise f , we need to make estimations
of Dt+ν . Since every evaluation of f is dependent on D, the temporal evolution of the data stream
affects the function by having its values depend on time. Therefore, the function f is changing in
time.

The function f is expensive to evaluate where, at time t, we would only observe y as a response to
a portfolio x. Consequently, our sequence of decisions would usually be incrementally collated into
a single data set,

[
{(x1, 1), y1}, ..., {(xt, t), yt}

]
.

For every time t of interest, our goal is to find an xbest that gives us the best response ybest after
maximising f(x, t;Dt). In addition to function input and output observations, we also collect the
times t that the observations are made, and the data stream D that affects the response. Therefore,
if we place a GP prior on f and use an appropriate covariance function, we can effectively capture
the how the latent function varies in time as we move away from the observed data. We can achieve
this by including an extra input dimension to the data to infuse the time-related information. This
adds an extra term to the covariance that folds in the time evolution aspect of the problem. For this
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paper, we use the separable covariance function

k({xi, ti}, {xj , tj}) = kGabor(ti, tj)× kLinear(xi, xj) (1)

where

kGabor(ti, tj) = exp
(
− (ti − tj)2

2l2

)
cos

(2π(ti − tj)
p

)
and kLinear(xi, xj) = x>i P−1xj

where hyperparameter l is the lengthscale in time, p is the period and P is an N ×N diagonal ma-
trix with lengthscale hyperparameters of the portfolio dimensions along its diagonal. The separable
kernel we consider is of the form kSpectralMixture · kLinear. We used the linear kernel over the
portfolios because of the linear way that the investment rewards are realised when no transaction
costs are assumed. The spectral mixture kernel is used in order to capture time-dependent patterns
and was inspired by work in [22] where a kernel for pattern discovery is proposed. In the context of
online portfolio selection, these patterns may include mean reversion, anti-correlation and periodic-
ity, among others. The kernel proposed in [22] is dense in the space of all stationary kernels [23]. It
is a weighted mixture of Gabor kernels and in this paper we consider the simplest case.

Table 1: General classification for the state-of-the-art online portfolio selection
algorithms.

Classification Algorithm Reference
Benchmarks Equally weighted

Best-stock
Constant Rebalanced Portfolios (CRP) [6–8]

Follow Best Universal Portfolios (UP) [7]
Exponential Gradient (EG) [9]
Follow Regularised Leader (ONS) [10]

Follow Worst Anti Correlation (AntiCor) [11, 12]
Passive Aggressive Mean Reversion (PAMR) [13]
Confidence Weighted Mean Reversion (CWMR) [14]
Online Moving Average Reversion (OLMAR) [15]

Pattern
Matching

Nonparametric Kernel (BK) [16]

Nonparametric Nearest-Neighbour (BNN ) [17]
Correlation-driven Nonparametric Learning (CORN) [18]

In summary, we
place a GP prior
over the portfolio-
time space in
order to obtain a
posterior over the
function’s time
scale to capture
the time evolution.

4.2 The
ABO framework

There are several
aspects of this
problem that re-
quire illumination.

Firstly, we are
solving multiple
related problems
rather than one
global problem.

Secondly, each of these sub-problems is a global optimisation problem that requires us to find the
best portfolio constrained at particular times where we assume there is a smoothly varying objective
function at each of these times. We are also constrained to make evaluations at particular time steps
during the optimisation. We cannot choose evaluations of our function that occur at times before the
evaluations we have already gathered. Unlike standard BO where we have several steps to return the
proposed minimum for a fixed objective function, we only have one step to return this best point for
any particular time step for the time-varying objective function.

Since we only have one evaluation to return an optimal portfolio for the next investment period,
we resort to using epistemic explorative evaluations of our function based on our GP. To aid with
this, we use the qEI heuristic [20, 21] to generate a batch of q proposals for that time step. Because
the actual evaluation and optimisation of qEI is expensive, we use an approximation similar to the
Kriging believer (KB) in [20] that produces these q points sequentially. Our approach differs with
KB in this way: after generating the q points from the EI optimisations, we rank these proposals
based on the GP posterior means they correspond to rather than the EI values they give. We do this
because some points with high EI values may correspond to exploratory steps that may be riskier
and we wish avoid them. This is an application-specific heuristic meant to avoid high drawdowns,
which is pivotal in financial investment applications. This stems from the need to reduce the risk
of losing money when making investment decisions. Therefore, from the q proposals, we chose a
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single point that gives us the best return based on our epistemic beliefs of our objective function and
discard the others.

Adding time to the covariance function introduces uncertainty about the past data we have observed.
To deal with this, we have to recalculate the GP prior hyperparameters at every time step to update
our priors with information of how the function has changed in time.

In summary, at every step t, we perform BO on our objective function constrained at a future time
t+ν that we would like to find the best portfolio for. We gather our batch of q multi-points based on
qEI, return the best portfolio and discard the others. Algorithm 2 shows an outline of the approach.

5 Experiments

Algorithm 2 Adaptive Bayesian optimisation (ABO)

Input: D0, prior f ∼ GP(µ, k)→ I0
Input: Budget of BO steps n, iteration label i
Input: Number of batch-points q
Input: Time label t, Time window ν
Output: Optima {xt0+ν , xt0+2ν , ..., xt0+Nν}
Output: {yt0+ν , yt0+2ν , ..., yt0+Nν}

for i = 1, 2, ...n do
Itemp = Ii−1
(x∗1, ..., x∗q) = arg max

x|t=t0+iν
qEI(x1, ..., xq)

Set xt0+iν = x∗j where max{µposterior(x∗j ), j = 1, ..., q}
yt0+iν = f(xt0+iν , i), take action & observe true response
Di = Di−1 ∪ di, observe update in datastream
Ii = Ii−1 ∪ {xt0+iν , yt0+iν}
Update GP model

end for

In this section we present ex-
periments to empirically analyse
adaptive Bayesian optimisation
for online portfolio selection.

The data used in the experiments
is shown in table 2. For more de-
tails on the datasets see [13, 24].
The implementation was in
MATLAB with qEI optimisa-
tion done with the DIRECT
search solver for derivative-
free optimisation in where the
portfolio and optimisation con-
straints were set. The GP prior
had a zero mean function and
the separable covariance func-
tion in equation 1 with MAP
estimation of hyperparameters.
We used a maximum moving data window of size 5 times the input dimensions for all experiments
in order to deal with computational complexity of the GP when the number of data points increased.

Table 2: Summary of 4 real datasets in used in experiments.

Dataset # Assets # Days Period

SP500 25 1276 (5 yrs) Jan/2/1998 – Jan/31/2003
DJIA 30 507 (2 yrs) Jan/14/2001 – Jan/14/2013
TSE 88 1258 (5 yrs) Jan/4/1994 – Dec/31/1998
MSCI 24 1043 (4 yrs) Apr/1/2006 – Mar/31/2010

The averaged results performed on
5 runs of the experiment on each
dataset are shown in table 3. The
time window (ν) used was one day.
The results for competitor methods
are based on configurations described
in [25]. The results show that the
ABO strategy with qEI achieves bet-
ter performance than the competi-
tors and significantly outperforms the
state-of-the-art, Online Moving Aver-
age Reversion [15, 25]. BO benefits from the specification of priors and subsequent adaptation to
new trends in the observed signals. An examination of the portfolios generated by BO showed that
it invested in a small subset of the assets in the portfolio at every timestep, mostly following trends
most consistent with the posterior mean and avoiding riskier positions with higher uncertainty. This
was due to the selection criteria of the winning portfolio from the q generated proposals and also
from the constraints imposed when optimising qEI.

6 Conclusions

We presented an adaptive Bayesian optimisation approach for online portfolio selection by mod-
elling the objective function at every step as an expensive, time-varying, black-box function. We
described an appropriate dynamic function prior model suited to this problem. Furthermore, we
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Table 3: Cumulative wealth achieved by various trading strategies on 4 datasets.

Methods SP500 DJIA TSE MSCI
Equally weighted 1.34 0.76 1.61 0.91
Best-stock 3.78 1.19 6.28 1.50
BCRP 4.04 1.24 6.78 1.51
UP 1.64 0.81 1.59 0.92
EG 1.63 0.81 1.60 0.92
ONS 3.34 1.53 1.62 0.86
BK 2.24 0.68 1.62 2.64
BNN 3.07 0.88 2.27 13.47
CORN 6.35 0.84 3.56 26.10
AntiCor 5.89 2.29 39.36 3.22
PAMR 5.09 0.68 264.86 15.23
CWMR 5.90 0.68 332.62 17.28
OLMAR-S 8.63 2.12 424.80 16.39
OLMAR-E 8.63 1.20 678.44 21.29
ABO 13.01 107.39 1682 342.83

empirically demonstrated that the resulting algorithm skilfully navigates the portfolio-time space
seeking out the best portfolios to hold.
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