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Abstract

Bayesian optimisation has emerged during the last few years as an effective ap-
proach to optimise black-box functions where direct queries of the objective are
expensive. In many real applications, however, pairwise preferences rather than
direct feedback values are available. Such scenarios arise, for instance, in A/B
tests or recommendation systems. We present BOPPER, Bayesian Optimisation
with Pairwise PrEferential Returns, a new global optimisation approach able to
find the optimum of a latent function that can only be queried through pairwise
comparisons, the so-called duels. BOPPER generalises previous discrete duelling
approaches by modelling the probability of the the winner of each duel by means
of Gaussian process model with a Bernoulli likelihood. The latent preference
function is used to define the Copeland Expected Improvement (CEI), a new ac-
quisition function tailored to this scenario. We illustrate the benefits of BOPPER
in a variety of experiments.1

1 Introduction

Let g : X → < be well-behaved black-box function defined on a bounded subset X ⊆ <q . We are
interested in solving the global optimisation problem of finding

xmin = argmin
x∈X

g(x). (1)

We assume that g is not directly accessible and that queries to g can only be done in pairs of points
or duels [x,x′] ∈ X × X from which binary feedback {0, 1} that represents whether or not x is
preferred over x′ (has lower value) is obtained2. In the sequel we will consider that x is the winner
of the duel if the output is {1} and that x′ wins the duel otherwise if the output is {0}. The goal here
is to find xmin by reducing as much as possible the number of performed duels.

Our setup is different to the one typically used in Bayesian optimisation where direct feedback
from g in single locations of the domain is available [Jones, 2001, Snoek et al., 2012]. However,
although the scenario described in this work has not received a wider attention, there exist a variety
of real wold scenarios in which the objective function needs to be optimized via preferential returns.
Most cases involve modeling latent human preferences, such as examples in the web design via A/B
testing or the use of recommender systems.

1Work done while all the authors were at the University of Sheffield.
2In the sequel we use [x,x′] to represent the vector resulting of concatenating both elements involved in the

duel.
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Figure 1: Illustration of the key elements of an optimisation problem with pairwise preferen-
tial returns in a one-dimensional example (Forrester function, see Section 4 for details). Top-
left: objective function to minimise. This function is only accessible through pairwise compar-
isons of inputs x and x′. Right: true preference function πf ([x,x

′]). Note that, by symmetry,
πf ([x,x

′]) = 1− πf ([x′,x]). Bottom left: The normalised Copeland’s and soft-Copeland function
whose maximum is located at the same point of the minimum of f .

Optimisation methods for pairwise preferences have been already studied in the armed-bandits con-
text [Yuea et al., 2012]. Zoghi et al. [2014] propose a method for the K-armed duelling bandit
problem based on the Upper Confidence Bound algorithm. Jamieson et al. [2015] study the prob-
lem by allowing noise comparisons between the duels. Zoghi et al. [2015] choose actions using
contextual information. Dudı́k et al. [2015] study the Copeland’s dueling bandits, a case in which
a Condorcet winner, or an arm that uniformly wins the duels with all the other arms may not exist.
Szörényi et al. [2015] study Online Rank Elicitation problem in the duelling bandits setting. An
analysis on Thompson sampling in duelling bandits is done bu Wu et al. [2016]. Yue and Joachims
[2011] proposes a method that does not need transitivity and comparison outcomes to have indepen-
dent and time-stationary distributions. From a modelling perspective preferential learning has also
been studied [Chu and Ghahramani, 2005].

2 Background and Approach

The approach followed in this work is inspired on the work of Ailon et al. [2014] in which cardinal
bandits are reduced to ordinal ones. Similarly, here we focus on the idea of reducing the choice of
the best duel to some optimisation problem defined on X whose solution is the same as (1).

We assume that each duel [x,x′] incurs in a joint loss f([x,x′]) that is never directly observed.
Instead, the feedback after each pair is proposed is a binary return y ∈ {0, 1} of which of the two
locations is preferred. In this work we assume that f([x,x′]) = g(x′)− g(x), but other alternatives
are possible. Note that the more x is preferred over x′ the smaller is the loss.

The model of choice is a Bernoulli probability function p(y = 1|[x,x′]) = πf ([x,x
′]) and p(y =

0|[x,x′]) = πf ([x
′,x]) where π : < × < → [0, 1] is a link function. Via the latent loss, f maps

each query [x,x′] to the probability of having a preference on the left input x over the right input
x′. The link function has the property that πf ([x,x′]) = 1− πf ([x′,x]). A natural choice for πf is
the logistic function

πf ([x
′,x]) = σ(f([x′,x])) =

1

1 + e−f([x′,x])
. (2)

but others are possible. Note that for any duel [x,x′] in which g(x) ≤ g(x′) it holds that
πf ([x,x

′]) ≥ 0.5. πf is therefore a preference function that fully specified the problem.

Following the literature of raking methods, we introduce here the concept of normalised Copeland
score as S(x) = Vol(X )−1

∫
X I{πf ([x,x′])≥0.5}dx

′ where Vol(X ) =
∫
X dx

′ is a normalizing con-
stant that bounds S(x) in the interval [0, 1]. If X is a finite set, the Copeland score is simply the
proportion of duels that certain element x will win with probability larger than 0.5. Instead of the
Copeland’s score in this work we use a soft version of it, in which the probability function πf is
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Algorithm 1 The BOPPER algorithm.
Input: Dataset D0 = {[xi,x′i], yi}Ni=1 and number of remaining evaluations n.
for j = 0 to n do

1. Fit a GP with kernel k to Dj and learn the probability preferences function πf,j(x).
2. Obtain the Copeland function Cj(x) by Montecarlo integration and compute x?j .
3. Select next duel [xj+1,x

′
j+1] by maximizing CEI defined in (4).

4. Run the duel [xj+1,x
′
j+1] and obtain yj+1.

5. Augment the dataset Dj+1 = {Dj ∪ ([xj+1,x
′
j+1], yj+1)}.

end for
Fit a GP with kernel k to Dn.
Returns: Report the current Condorcet’s winner x?n.

integrated over X without further truncation. Formally, we define the soft-Copeland score as

C(x) = Vol(X )−1
∫
X
πf ([x,x

′])dx′ (3)

which aims to capture the ‘averaged’ probability of being x the winner of a duel.

Following the armed-bandits literature, we say that x? is a Condorcet winner if it is point with
maximal soft-Copeland score. It is possible to prove that if x? is a Condorcet winner with respect
to the soft-Copeland score then it is a global minimum of f in X . This implies that if by observing
the results of a set of duels we can learn the preference function πf ([x′,x]) then the optimisation
problem of finding the minimum of f can be addressed by finding the Condorcet winner according
to the Copeland score. See Figure 1 for an illustration of this property.

3 Considering preferential returns in Bayesian optimisation

3.1 Learning the preference function πf ([x,x′]) with Gaussian processes

Assume that N duels have been performed so far resulting in a dataset D0 = {[xi,x′i], yi}Ni=1 and
that we can carry out n more before we have to report a solution to (1). We will denote by Dj the
data set resulting of augmenting D0 with j new pairwise comparisons. Given Dj , inference over
the latent function f and its warped version πf can be carried out by using Gaussian processes (GP)
for classification [Rasmussen and Williams, 2005]. In a nutshell, a GP is a probably measure over
functions such that any linear restriction is multivariate Gaussian. GPS are fully determined by a
positive definite covariance operator and, in standard regression cases with Gaussian likelihoods,
closed forms for the posterior mean and variance are available. In the classification context, the
basic idea behind Gaussian process is to place a GP prior over some latent function f that captures
the membership of the data to the two classes and to squash it through the logistic function to obtain
some prior probability πf . This is similar to (2) where now πf is a random process, so it is f .
Although in the regression context predictions are straightforward with a GP, in the classification
context predictions are analytically intractable and either analytical approximations or Montecarlo
sampling is needed. See [Rasmussen and Williams, 2005] for details.

3.2 Computing the soft-Copenland score and and the Condorcet winner

Denote by fj the GP learnt once j duels have been performed and by πf,j(x) the corresponding
squashed probability function. In this work we use Montecarlo integration to compute the Copeland
score at the via Cj(x) =M−1

∑M
k=1 πf,j([x,xk])) where x1, . . . ,xM are a set of landmark points

to perform the integration. The Condorcet winner (the point that is most likely the minimum in the
j-th is computed by taking x?j = argmaxx∈X Cj(x).

3.3 Copeland Expected Improvement

Denote by c?j = Cj(x
?
j ), the ’value’ of the Condorcet’s winner at iteration j. For any new proposed

duel [x,x′], two outcomes are possible. We denote by the c?j,x the value of the estimated Condorcet

3



0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

x’

0.
5

0.5

0.5

0.5

0.5

Empirical preference function

0.36

0.40

0.44

0.48

0.52

0.56

0.60

0.64

0.0 0.2 0.4 0.6 0.8 1.0

x

0.46

0.48

0.50

0.52

0.54

C
(x

)

x=0.1 x’=0.8

Copeland improvement

Copeland
Copeland if x wins
Copeland is x’ wins

Figure 2: Left: Empirical preference function obtained after 9 duels when optimizing the Forrester
function. The star at [0.1, 0.8] represents a candidate point to perform a new duel. Right: Computed
Copeland function and the two phantasized Copeland functions in terms on the result of the duel.
Both potential outcomes improve the current best score. The value of the acquisition is a weighted
average of the improvements.
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Figure 3: Averaged value of the objective in the current best value proposed by the BOPPER, the
Sparring algorithm and a random duels search algorithms in two problems with preferential returns.
BOPPER is shows the best performance in both cases. We omit the result of the Sparring algorithm
in case of the Six-Hump camel function as the number of use iterations is smaller than the possible
locations (and results are therefore uninterpretable) .

winner resulting of augmentingDj with {[x,x′], 1} and by c?j,x′ the equivalent value but augmenting
the dataset with {[x,x′], 0}. We define the Copeland Expected Improvement at iteration j as:

CEIj([x,x
′]) = πf,j([x,x

′])(c?j,x − c?j )+ + πf,j([x
′,x])(c?j,x′ − c?j )+ (4)

where (·)+ = max(0, ·). The next duel is selected at the pair that maximizes the CEI. Intuitively,
the CEI evaluated at [x,x′] is a weighted sum of the total increase of the best possible value of
the Copeland score in the two possible outcomes of the duel. The weights are chosen to be the
probability of the two outcomes, which is naturally estimated by πf,j . See Figure 2 for details of
how the acquisition is computed and Algorithm 1 for a systematic description of BOPPER.

4 Experiments
We compare BOPPER with the Sparring algorithm proposed in [Ailon et al., 2014] and a random
policy (duels are selected using a uniform distribution). We test the methods in the optimisation of
the Forrester (1D) and Six-Hump-Camel (2D) functions3 using as model of choice for the output
of the duels the framework described in Section 2. The search is performed in a uniform grid of
30 locations for the Forrester function and 64 for the Six-Hump camel. We assign to each problem
a budget of 100 and 30 duels respectively after which the best location of the optimum should be
reported. Each algorithm is run 10 times with different initial duels, which are kept the same across
all methods. In Figure 3 we compare the methods by showing the averaged value of g at the proposed
locations. BOPPER is best policy in all cases.

3https://www.sfu.ca/ ssurjano/optimisation.html
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5 Conclusions
We have proposed a new method, BOPPER, for optimizing black-box functions in which only pref-
erential returns are available. The new approach improve previous bandits alternatives by modeling
the correlation between the candidates of to the optimum with a Gaussian process for classification.
Future extensions of the work include improvements in the approximation of the Copeland function,
further experimentation and a theoretical analysis of the convergence of the proposed method.
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