
Efficient nonmyopic active search

Shali Jiang, Gustavo Malkomes
Washington University in St. Louis

{jiang.s,luizgustavo}@wustl.edu

Geoff Converse
Simpson College

geoff.converse@my.simpson.edu

Alyssa Shofner
University of South Carolina

alyssa.shofner@icloud.com

Benjamin Moseley, Roman Garnett
Washington University in St. Louis
{bmoseley,garnett}@wustl.edu

Abstract

Active search is a learning paradigm with the goal of actively identifying as many
members of a given class as possible. Many real-world problems can be cast as an
active search, including drug discovery, fraud detection, and product recommenda-
tion. Previous work has derived the Bayesian optimal policy for the problem, which
is unfortunately intractable due to exponential complexity. In practice, myopic
approximations are used instead, only looking a small number (e.g., 1–3) of steps
ahead in the decision process. We propose a novel active search policy that always
considers the entire remaining budget and is thus nonmyopic, yet remains efficient.
Our approach automatically and dynamically balances exploration and exploitation
in a manner consistent with the budget, without relying on a tradeoff parameter. We
also develop a bounding technique to achieve greater efficiency when using certain
natural probability models. Experimental results show superior performance of our
method over myopic approximations to the optimal policy.

1 Introduction

In active search (AS), we seek to sequentially inspect data so as to discover members of a rare, desired
class. The labels are not known a priori but can be revealed by querying a costly labeling oracle. The
goal is to design an algorithm able to sequentially query points to find as many valuable points as
possible under a budget constraint. Real-world problems can be naturally posed in terms of active
search; drug discovery [3], fraud detection, and product recommendation [14] are a few examples.

Previous work [4, 5] developed Bayesian optimal policies for active search with a natural utility func-
tion. Not surprisingly, this policy requires exponential computation. To overcome this computational
intractability, myopic lookahead policies are used in practice, which compute the optimal policy only
up to a limited number of steps into the future, ignoring what can happen beyond that horizon.

We introduce a novel nonmyopic policy for active search that considers not only the potential
immediate contribution of each unlabeled data point but also the potential impact on the remaining
points which could be chosen afterwards. Our policy automatically balances exploitation against
exploration consistent with the labeling budget without requiring any parameters controlling this
tradeoff. We also develop an effective strategy for pruning unlabeled points in each step by bounding
their potential impact to the search problem. Our results demonstrate that our approach significantly
outperforms myopic lookahead policies and can dynamically adapt to the remaining budget.

Related work. Active search falls into the broader framework of active learning [7, 12], but with
drastically different goal. Active search is similar in spirit to the multi-armed bandit (MAB) problem,
but the crucial difference is in AS the “arms" (i.e., unlabeled points) are correlated and the rewards
are deterministic. Despite the difference, we note that our policy is similar in spirit to the knowledge

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



gradient policy introduced in [2]. [15] proposed a method called GP-SELECT specifically for
Gaussian process models, inspired by the GP-UCB algorithm [13]. Our policy doesn’t make any
assumption about the underlying model. Readers interested in active search specifically on graphs
can refer to [4, 16, 11, 9]. Variations of AS such as active area search [8] and active pointillistic
pattern search [10] have also been considered. Active search can also be interpreted as a realization
of Bayesian optimization with binary rewards and cumulative regret. Interestingly, we also note our
policy is similar to a recently proposed nonmyopic Bayesian optimization algorithm, GLASSES [6],
in the sense that we both consider the remaining budget when choosing which point to evaluate next.

2 Efficient nonmyopic active search

Suppose we are given a finite domain of elements X , {xi}. There is a rare subset R ⊂ X , the
members of which are considered valuable, but their identities are unknown a priori. We will call the
elements ofR targets or positive items. Assume that there is an oracle that can determine whether
a specified element x ∈ X is a target, producing the binary output y , 1{x ∈ R}. The oracle,
however, is assumed to be expensive and may only be queried t times. We seek to design a policy
that sequentially queries elements to maximize the number of targets discovered.

We will express our preference over different sets of observations D =
{
(xi, yi)

}
through a natural

utility: u(D) =
∑

yi, which simply counts the number of targets in D. Then, the problem is
to sequentially construct a set of t points D with the goal of maximizing u(D). We use Di ={
(xj , yj)

}i
j=1

to denote the observed data after i ≤ t queries.

As we have mentioned before, myopic `-step-lookahead approximations of Bayesian optimal policies
[5] assume that the search procedure will terminate after the next ` evaluations, which does not
reward exploratory behavior that improves performance beyond that horizon. We propose to continue
to exactly compute the expected utility to some fixed horizon, but to approximate the remainder of
the search differently. We will approximate the expected utility from any remaining portion of the
search by assuming that any remaining points, {xi+1, xi+2, . . . , xt}, in our budget will be selected
simultaneously in one big batch. By exploiting linearity of expectation, it is easy to work out the
optimal policy for selecting such a batch: we simply select the points with the highest probability of
being valuable. The resulting approximation is

max
x′

E
[
u(Dt\Di) | x′,Di

]
≈
∑′

t−i Pr(y = 1 | x,Di), (1)

where the sum-with-prime symbol
∑′

k indicates summing the largest k values (here x ∈ X \ Di).

Our proposed policy selects points maximizing the approximate final expected utility using:

E
[
u(Dt) | xi,Di−1

]
≈ u(Di−1)+ Pr(yi = 1 | xi,Di−1)+ Eyi

[∑′
t−i Pr

(
y = 1 | x,Di

)]
︸ ︷︷ ︸

exploration, <t−i

. (2)

We will call this policy efficient nonmyopic search (ENS). As in the optimal policy, we can interpret
(2) naturally as rewarding both exploitation and exploration, where the exploration benefit is judged
by a point’s capability to increase the top probabilities among currently unlabeled points. We note
further that in (2) the reward for exploration naturally decreases over time as the budget is depleted,
exactly as in the optimal policy. In particular, the very last point xt is chosen greedily by maximizing
probability, agreeing with the true optimal policy.

Note that we may also use the approximation in (1) as part of a finite-horizon lookahead with ` > 1,
producing a family of increasingly expensive but higher-fidelity approximations to the optimal policy,
all retaining the same budget consciousness. The approximation in (2) is equivalent to a one-step
maximization of (1). We will see in our experiments that this is often enough to show massive gains
in performance, and that even this policy shows clear awareness of the remaining budget throughout
the search process, automatically and dynamically trading off exploration and exploitation.

Nonmyopic behavior. To illustrate the nonmyopic behavior of our policy, we have adapted the toy
example presented in [5] (Section 7.1). Let I , [0, 1]2 be the unit square. We repeated the following
experiment 100 times. We selected 500 points iid uniformly at random from I to form the X input
space. We create an active search problem by defining the set of targetsR ⊆ X to be all points within
Euclidean distance 1/4 from any of five points: (0, 0), (0, 1), (1, 0), (1, 1), (1/2, 1/2) (the four corners

2



(a) (b) (c) (d)

Figure 1: Kernel density estimates of the distribution of points chosen by ENS (a–b) and 2-step
lookahead [5] (c–d) during two different time intervals. The figures (a) and (c) show the kernel
density estimates for the first 100 locations; the figures (b) and (d), the last 100 chosen locations.

and the center). The closest point to the center (with overwhelming probability a target) and a random
element of X \ R forms an initial training set. We then applied ENS and the two-step-lookahead [5]
policies to sequentially select 200 further points for labeling.

Figure 1 shows a kernel density estimate of the distribution of locations selected by both methods
during two different time intervals. Figures 1(a–b) correspond to our method; Figures 1(c–d) to
two-step lookahead. Figures 1(a, c) consider the distribution of the first 100 selected locations;
Figures 1(b, d) consider the distribution of the last 100. The qualitative difference between these
strategies is clear. The myopic policy focused on collecting all targets around the center (Figure 1(c)),
whereas our policy explores the boundaries of the center clump (with considerably intensity), as well
as some of the corners (Figure 1(a)). As a result, our policy is capable of finding some of target points
in the corners, whereas two-step lookahead cannot (Figure 1(d)). More interestingly, we can see that
the highest probability mass in Figure 1(b) is the square center, which shows that our policy typically
saves the points with highest probability until the end. On average, the ENS policy found about 20
more targets at termination than the two-step-lookahead policy.

Implementation and time complexity. Suppose after observing a point we only need to update the
probabilities of at-most m other points (e.g., for a k-nn model). We can achieve a computational
complexity of O

(
n(log n+m logm+ t)

)
. which is about the same as two-step lookahead, which is

O
(
n(log n+m)

)
when implemented cleverly.

Pruning the search space. To further reduce the computational complexity, we can use a similar
strategy as in [5] to bound the score function (2) and prune the point that cannot possibly maximize
the expected utility. We empirically observe that over 92% of points can often be pruned on massive
drug discovery datasets [3]. Unfortunately we must omit the derivation of pruning strategy and these
massive empirical results due to the space limit.

3 Experiments

We implemented our approximation to the Bayesian optimal policy with the MATLAB active learning
toolbox,1 and have compared the performance of our proposed ENS policy with the myopic one-step
(greedy) and two-step approximations to the Bayesian optimal policy, presented in [5]. Note that [5]
and [3] thoroughly compared the one- and two-step policies, with the finding that the less-myopic
two-step algorithm usually performs better in terms of targets found, as one would expect. The
probability model Pr(y = 1 | x,D) we will adopt is the k-nearest-neighbor (k-nn) classifier as
described in Section 7 of [5], along with the corresponding probability bound.

CiteSeerx data. We consider a subset of the CiteSeerx citation network, first described in [5]. This
dataset comprises 39 788 2 computer science papers published in the top-50 most-popular computer
science venues. We form an undirected citation network from these papers. The target class is papers
published in the NIPS proceedings; there are 2 190 such papers, 5.5% of the whole dataset. Note that
distinguishing NIPS papers in the citation network is not an easy task, because many other highly
related venues such as ICML, AAAI, IJCAI, etc. are also among the most-popular venues. A feature

1https://github.com/rmgarnett/active_learning
2This dataset is constantly evolving by improving preprocessing, so numbers may change.

3

https://github.com/rmgarnett/active_learning


0 200 400

0

50

100

150

200

number of queries

nu
m

be
ro

ft
ar

ge
ts

fo
un

d 1-step
2-step
ENS

Figure 2: The learning curve of the one-step and
two-step myopic polices and our policy on the
NIPS dataset, averaged over 20 trials, each starting
with a random positive example.

query number

policy 100 300 500 700 900

one-step 25.5 80.5 141 209 273
two-step 24.9 89.8 155 220 287

ENS–900 25.9 94.3 163 239 308
ENS–700 28.0 105 188 259
ENS–500 28.7 112 189
ENS–300 26.4 105
ENS–100 30.7

Table 1: Average number of targets found by the
one- and two-step myopic policies and ENS with
different five budgets. The performance of the
best method at each time waypoint is in bold.

vector for each paper is computed by performing graph principal component analysis [1] on the
citation network and retaining the first 20 principal components.

We select a single target (i.e., a NIPS paper) uniformly at random to form an initial training set. The
budget is set to t = 500, and we use k = 50 in the k-nn model. These parameters match the choices
in [5]. We use each policy to sequentially select t papers for labeling. The experiment was repeated
20 times, varying the initial seed target. Figure 2 shows the average number of NIPS papers found
for each method as a function of the number of queries. We first observe that the two-step policy
outperforms the greedy one-step policy, as expected, and matching the results from [5]. Second, our
policy outperforms the two-step policy in this task by a large margin. The mean difference in number
of targets found at termination vs. two-step is 34.6 (189 vs. 155), an improvement on average of 22%.
A two-sided paired t-test testing the hypothesis that the average difference of targets found is zero
returns a p-value of p < 10−4, and a 95% confidence interval of [19.80, 49.30].

Another interesting observation is that during the initial ∼80 queries, ENS actually performs worse
on average than both myopic policies, after which it quickly outperforms them. This feature perfectly
illustrates an automatic exploration–exploitation transition made by our policy. As we are always
cognizant of our budget, we spend the initial stage thoroughly exploring the domain, without
immediate reward. Once complete, we exploit what we learned for the remainder of the budget. This
tradeoff happens automatically and without any need for an explicit two-stage approach or arbitrary
tuning parameters to control this tradeoff.

Varying the budget. A distinguishing feature of our method is that it always takes the remaining
budget into consideration when selecting a point, so we would expect different behavior with different
budgets. We repeated the above experiment for budgets t ∈ {100, 300, 500, 700, 900}, and report
in Table 1 the average number of NIPS papers found at these time points for each method. We have
the following observations from the table. First, ENS performs better than the myopic policies for
every budget. Second, ENS is able to adapt to the specified budget. For example, when comparing
performance after 100 queries, ENS–100 has located many more targets than the ENS methods with
greater budgets, which at that time are still strongly rewarding exploration. A similar pattern holds
when comparing other pairs of ENS variations, with one minor exception.

4 Conclusion

In this paper we proposed a novel method, efficient nonmyopic search (ENS), for the active search
problem. Our method approximates the Bayesian optimal policy by computing, conditioned on the
location of the next point, how many targets are expected at termination, if the remaining budget is
spent simultaneously. By taking the remaining budget into consideration in each step, we are able
to automatically balance exploration and exploitation. Despite being nonmyopic, ENS is efficient to
compute because future steps are flattened into a single batch, in contrast to the recursive simulation
required when computing the true expected utility. Experimental results demonstrate our superior
performance and automatic balance between exploration and exploitation.

4



5 Acknowledgments

SJ, GM, and RG were supported by the National Science Foundation (NSF) under award number
IIA–1355406. Additionally, GM was also supported by the Brazilian Federal Agency for Support and
Evaluation of Graduate Education (CAPES). GC and AS were supported by NSF under award number
CNS–1560191. BM was supported in part by a Google Research Award, a Yahoo Research Award,
and by NSF under award number CCF–1617724.

References
[1] F. Fouss, Alain Pirotte, Jean-Michel Renders, and Marco Saerens. Random-walk computation of similarities

between nodes of a graph with application to collaborative recommendation. IEEE Transactions on
Knowledge and Data Engineering, 19:355–369, 2007.

[2] Peter I Frazier, Warren B Poweel, and Savas Dayanik. A Knowledge-Gradient Policy for Sequential
Information Collection. SIAM Journal on Control and Optimization, 47(5):2410–2439, 2008.

[3] Roman Garnett, Thomas Gärtner, Martin Vogt, and Jürgen Bajorath. Introducing the ’active search’ method
for iterative virtual screening. Journal of Computer-Aided Molecular Design, 29(4):305–314, 2015.

[4] Roman Garnett, Yamuna Krishnamurthy, Donghan Wang, Jeff Schneider, and Richard Mann. Bayesian
optimal active search on graphs. In Ninth Workshop on Mining and Learning with Graphs, 2011.

[5] Roman Garnett, Yamuna Krishnamurthy, Xuehan Xiong, Jeff G. Schneider, and Richard P. Mann. Bayesian
optimal active search and surveying. In Proceedings of the 29th International Conference on Machine
Learning, 2012.

[6] Javier González, Michael Osborne, and Neil D Lawrence. Glasses: Relieving the myopia of Bayesian
optimisation. arXiv preprint arXiv:1510.06299, 2015.

[7] David D Lewis and William A Gale. A sequential algorithm for training text classifiers. In Proceedings
of the 17th Annual International ACM SIGIR conference on Research and Development in Information
Retrieval, pages 3–12, 1994.

[8] Yifei Ma, Roman Garnett, and Jeff G. Schneider. Active Area Search via Bayesian Quadrature. In
Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, pages
595–603, 2014.

[9] Yifei Ma, Tzu-Kuo Huang, and Jeff G. Schneider. Active Search and Bandits on Graphs using Sigma-
Optimality. In Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence, pages
542–551, 2015.

[10] Yifei Ma, Dougal J. Sutherland, Roman Garnett, and Jeff G. Schneider. Active pointillistic pattern search.
In Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, 2015.

[11] Joseph J Pfeiffer III, Jennifer Neville, and Paul N Bennett. Active Exploration in Networks: Using
Probabilistic Relationships for Learning and Inference. In Proceedings of the 23rd ACM International
Conference on Information and Knowledge Management, pages 639–648, 2014.

[12] Burr Settles. Active learning literature survey. Computer Sciences Technical Report, 1648, 2010.

[13] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias W. Seeger. Gaussian Process Optimization
in the Bandit Setting: No Regret and Experimental Design. In Proceedings of the 27th International
Conference on Machine Learning, pages 1015–1022, 2010.

[14] Dougal J. Sutherland, Barnabás Póczos, and Jeff Schneider. Active Learning and Search on Low-Rank
Matrices. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD 2013), pages 212–220, 2013.

[15] Hastagiri P. Vanchinathan, Andreas Marfurt, Charles-Antoine Robelin, Donald Kossmann, and Andreas
Krause. Discovering valuable items from massive data. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’15, pages 1195–1204, 2015.

[16] Xuezhi Wang, Roman Garnett, and Jeff G. Schneider. Active search on graphs. In The 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 731–738, 2013.

5


	Introduction
	 Efficient nonmyopic active search
	Experiments
	Conclusion
	Acknowledgments

