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Abstract

We adapt principles of probabilistic black-box optimization for applications where
learning is restricted to a single dataset rather than sequential experimentation. Our
goal is to identify beneficial interventions given limited observations of an underly-
ing population. We consider interventions that are narrowly focused (impacting
few covariates) and may be tailored to each individual or globally enacted over the
population. Proposing a conservative definition of the optimal intervention, we de-
velop efficient algorithms for the optimization, and provide theoretical guarantees
for our approach in a Gaussian Process setting.

1 Introduction
In many data-driven applications, including medicine, the primary interest is identifying interventions
that produce a desired change in some associated outcome. Most existing data is, however, not
generated through sequential experimentation, limiting applications of Bayesian optimization and
bandit algorithms. Due to experimental limitations, learning in such domains is commonly restricted
to an observational dataset Dn :“

 `

xpiq, ypiq
˘(n

i“1
which consists of IID samples from a population

with joint distribution PXY over covariates X P Rd and outcomes Y P R. Rather than relying on
interpretable models to summarize the underlying relationships (via simplifications such as linearity),
we introduce a framework to identify the most beneficial interventions directly from the data.

In our setup, an intervention on an individual with pre-treatment covariates X produces post-
treatment covariate values rX that determine the resulting outcome Y (depicted as graphical model:
X Ñ rX Ñ Y q. We make the following simplifying assumption:

Y “ fp rXq ` ε with Erεs “ 0, ε KK rX,X (1)

for some (unknown) function f that encodes the effects of causal mechanisms. The relationship
between outcomes and covariate values is assumed to remain invariant, following the same f, ε
whether the covariate values resulted from any of the interventions under consideration, or no
intervention at all. This invariance property has been previously adopted as a reasonable assumption
for mechanistic systems in the absence of serious confounding [1, 2]. Additionally, we suppose Dn
is comprised of naturally occurring covariate values where all rxpiq “ xpiq (ie. covariates remain static
without intervention, so the observed covariate values directly influence the observed outcomes).

Given this data, we aim to learn an intervention policy defined by a covariate transformation T :
Rd Ñ Rd, applied to each individual in the population. T pxq presents a desired setting of the
covariates that should be reflected by subsequent external intervention to actually influence outcomes.
We assume precise intervention is possible to ensure any feasible T is exactly reflected in the post-
treatment values: rx “ T pxq. Our strong assumptions are made to ensure that statistical modeling
alone suffices to identify beneficial interventions. While many real-world tasks severely violate these
conditions, there exist important domains where violations are sufficiently minor and our methods
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effectively identify a transformation to produce substantial post-treatment improvement in outcomes
(§S8 studies a misspecified setting where our assumptions are wrong).

Related work. Various nonlinear Bayesian predictive models have been proposed for estimating
treatment effects [3, 4, 5], but this previous work does not consider identifying the optimal intervention
from limited data. Our goals appear similar to Bayesian optimization [6], but sequential exploration
of the response-surface is not appropriate in our context. Whereas Bayesian optimization seeks
a single globally optimal configuration of covariates, we focus on the pre vs. post-intervention
change in outcome for each individual. In practice, feasible covariate transformations are constrained
based on an individual’s naturally occurring covariate values, which stem from some underlying
population beyond our control. For example, a system to help improve writing (eg. to increase the
online popularity of an article [7]) should not simply output the single globally optimal text (with
eg. higher expected popularity than any other writing), but should rather inform an author of simple
modifications likely to improve the outcome of his/her existing article. Treating such constraints
becomes particularly important when we wish to prescribe a single intervention applied to the entire
population (there is no underlying population in Bayesian optimization).

2 Methods
Our strategy is to first fit a Bayesian model for Y | X whose posterior encodes our beliefs about the
underlying function f given the observed data. The posterior for f | Dn may be summarized at any
points x, x1 P Rd by mean function Erfpxq | Dns and covariance function Covpfpxq, fpx1q | Dnq.

Personalized Intervention. For x P Rd, we are given a set Cx Ă Rd that denotes constraints of
possible transformations of x. Let rx “ T pxq P Cx denote the new covariate-measurements of this
individual after a particular intervention on x which alters covariates as specified by transformation
T . Assuming rx “ T pxq, we write fpT pxqq “ EεrY | rX “ T pxqs. We first consider personalized
interventions in which T may be tailored to a particular x, and define the individual expected gain:

GxpT q :“ fpT pxqq ´ fpxq | Dn (2)

Under the Bayesian perspective, Gx is a random function which evaluates the expected outcome-
difference at the post vs. pre-intervention setting of the covariates (where expectation Eε is over the
noise ε, not our posterior). To infer the best personalized intervention (supposing higher outcomes
are desired), we use optimization over vectors T pxq P Rd to find:

T˚pxq “ argmax
T pxqPCx

F´1
GxpT q

pαq (3)

where F´1
Gp¨qpαq denotes the αth quantile of our posterior distribution over Gp¨q. This implies the

intervention that produces T˚pxq should improve the expected outcome with probability ě 1´ α
under our posterior beliefs (we conservatively choose α ! 0.5).

Defined based on known constraints of feasible interventions, the set Cx Ă Rd enumerates possible in-
terventions that can be applied to an individual with covariate values x. In many practical applications,
x-independent transformations are not realizable through intervention. Consider gene perturbation, a
scenario where it is impractical to simultaneously target more than a few genes due to technological
limitations. If alternatively intervening on a quantity like caloric intake, it is only realistic to change
an individual’s current value by at most a small amount. The choice Cx :“ tz P Rd : ||x´ z||0 ď ku
reflects the constraint that at most k covariates can be intervened upon. We can denote limits on the
amount that the sth covariate may be altered by Cx :“ tz P Rd : |xs ´ zs| ď γsu for s P t1, . . . , du.

For any x, T pxq P Rd: the posterior for GxpT q has mean = ErfpT pxq | Dns ´ Erfpxq | Dns,

variance “ VarpfpT pxqq | Dnq ` Varpfpxq | Dnq ´ 2CovpfpT pxqq, fpxq | Dnq

which is easily computed using the corresponding mean/covariance functions of the posterior f | Dn.
When T pxq “ x, the objective in (3) takes value 0, so any superior optimum corresponds to an
intervention we are confident will lead to expected improvement. If there is no good intervention
in Cx (corresponding to a large increase in the posterior mean) or too much uncertainty about fpxq
given limited data, then our method simply returns T˚pxq “ x indicating no intervention should be
performed. Note that our objective exhibits the aforementioned desirable characteristics because it
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relies on the posterior beliefs regarding both fpT pxqq and fpxq which are tied via the covariance
function. In contrast, a similarly-conservative lower confidence bound objective (akin to acquisition
functions from Bayesian Optimization) would only consider fpT pxqq, and can propose unsatisfactory
transformations where Erfpxq | Dns ą ErfpT pxqq | Dns.
Population Intervention. In certain applications, policy-makers are interested in designing a
single intervention which will be applied to all individuals from the same underlying population as
the data. Relying on such a global policy is the only option in cases where we no longer observe
covariate-measurements of new individuals outside the data. In our gene perturbation example, gene
expression may no longer be individually profiled in future specimens that receive the decided-upon
intervention to save costs/labor.

Assuming the covariatesX are distributed according to some underlying (pre-intervention) population,
we define the population expected gain function:

GXpT q :“ EX rGxpT qs “ EX
“

fpT pxqq ´ fpxq | Dn
‰

(4)

which is also randomly distributed based on our posterior (EX is expectation with respect to X
which is not modeled by f | Dn). Our goal is now to find a single transformation T : Rd Ñ Rd
corresponding to a population intervention which will (with high certainty under our posterior beliefs)
lead to large outcome improvements on average across the population. However, the multivariate
distribution of X is unknown and difficult to model in practice, so we find the optimal population
intervention using an empirical estimate:

T˚ “ argmax
TPT

F´1
GnpT q

pαq (5)

where GnpT q :“
1

n

n
ÿ

i“1

“

fpT pxpiqqq ´ fpxpiqq
‰

| Dn is the empirical population expected gain,

whose posterior distribution has mean “
1

n

n
ÿ

i“1

ErfpT pxpiqqq | Dns ´ Erfpxpiqq | Dns

variance “
1

n2

n
ÿ

i“1

n
ÿ

j“1

”

Cov
´

fpxpiqq, fpxpjqq | Dn
¯

´ Cov
´

fpT pxpiqqq, fpxpjqq | Dn
¯

´ Cov
´

fpxpiqq, fpT pxpjqqq | Dn
¯

` Cov
´

fpT pxpiqqq, fpT pxpjqqq | Dn
¯ ı

(6)

T , the family of possible transformations, is constrained such that T pxq P Cx for all T P T , x P Rd.
Again, the population intervention objective in (5) is 0 if T pxq “ x, so the resulting policy is to
perform no intervention under excessive uncertainty or a dearth of favorable transformations in T .
Although T is a function of x, the form of the transformation must be agnostic to the specific values
of x (so the intervention can be applied to new individuals without measuring their covariates).

We consider two types of global policies that we find widely applicable. Shift-interventions involve
transformations of the form: T pxq “ x`∆ where ∆ P Rd represents a (sparse) shift that the policy
applies to each individuals’ covariates (eg. always adding 3 to the value of the second covariate
corresponds to T pxq “ rx1, x2`3, . . . , xds @x). Uniform-interventions are policies which set certain
covariates to a constant value for all individuals and involve transformations TI�zpxq “ rz1, . . . , zds
such that for some covariate-subset I Ă t1, . . . , du : zj “ xj @j R I (eg. always setting the first
covariate to 0, for example in a gene knockout, corresponds to T pxq “ r0, x2, . . . , xds @x).

3 Algorithms
Able to utilize any Bayesian predictive model, our framework is demonstrated using Gaussian Process
(GP) regression [8] to model Y | X in this work (see §S2). Under the standard GP model, GxpT q
follows a Gaussian distribution and the αth quantile of our personalized gain is simply given by:

F´1
GxpT q

“ErGxpT qs ` Φ´1pαq ¨ VarrGxpT qs (7)

where Φ´1pαq is theNp0, 1q quantile. The quantiles of the empirical population gain may be similarly
obtained. When a smooth kernel kp¨, ¨q is adopted in the GP prior, derivatives of our intervention-
objectives are easily computed with respect to (continuous) T for gradient-based optimization.
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In many practical settings, an intervention that only affects a small subset of variables is desired.
For a shift intervention T pxq “ x`∆, we introduce the convenient notation Gnp∆q :“ GnpT q. In
applications where shifting xs (the sth covariate for s P t1, . . . , du) by one unit incurs cost γs, we
account for these costs by considering the following regularized intervention-objective:

Jλp∆q :“ F´1
Gnp∆q

pαq ´ λ
d
ÿ

s“1

γs|∆s| (8)

By maximizing Jλ over C∆ :“ t∆ P Rd : x `∆ P Cx for all x P Rdu, policy-makers can decide
which variables to intervene upon (and how much to shift them), depending on the relative value of
outcome-improvements (specified by λ). This optimization is performed using the proximal gradient
method [9], where at each iterate: a step in the gradient direction is followed by a soft-thresholding
operation [10] as well as a projection back onto the feasible set C∆. To avoid poor local optima, we
employ a continuation technique [11] that performs a series of gradient-based optimizations over
variants of this objective with tapering levels of added smoothness (details in §S3).

In some settings, one may want to ensure at most k ă d covariates are intervened upon. We identify
the optimal k-sparse shift intervention via the Sparse Shift Algorithm in §S3.1, which relies on
`1-relaxation [10] and the regularization path of our penalized objective in (8). To find a uniform
intervention that sets k of the covariates to particular fixed constants across the entire population,
we instead employ a forward step-wise selection algorithm (detailed in §S3.2). Recall that in the
case of personalized intervention, we simply optimize over vectors T pxq P Cx. Any personalized
transformation can therefore be equivalently expressed as a shift in terms of ∆x P Rd such that
T pxq “ x ` ∆x. After substituting the individual gain Gxp∆xq in place of the population gain
Gnp∆q within our definition of Jλ in (8), we can thus employ the same algorithms to identify
sparse/cost-sensitive personalized interventions.

4 Results
Theoretical. Theorems 1 and 2 in §S4 characterize the rate at which our personalized/population-
intervention objectives are expected to converge to the true improvement (due to contraction of the
posterior as n grows [12]). These theorems imply the maximizer of our intervention-objectives will
converge to the true optimal transformation as nÑ8 (under a reasonable prior).

Empirical. In §S5, we apply our approach to simulated data from simple outcome-covariate
relationships. The average improvement produced by our chosen interventions rapidly approaches
the best possible value as n grows. We find that sparse-interventions consistently alter the correct
covariate subset, and proposed transformations under our conservative choice α “ 0.05 are much
more rarely harmful than those produced by optimizing the posterior mean (ignoring uncertainty).

In §S6, we consider the task of proposing a transcription factor gene to knockdown in order to
down-regulate a target gene. Using expression data from [13], our sparse population intervention
methodology is able to identify better knockdown candidates than frequentist linear models.

In §S7, we apply our sparse personalized intervention methodology to a writing improvement task
[7], where it appears to be highly effective. Here, the choice of quantile α “ 0.05 produces much
better results than α “ 0.5 (which is equivalent to simply optimizing predictive mean).

Misspecified Setting. In §S8, we suppose pX,Y q follow a structural equation model in which sparse
interventions are realized as a do-operation [14]. Thus, an intervention on one covariate can affect
the values of the other covariates (which is a violation of our assumptions: rx ‰ T pxq). Nonetheless,
we show theoretically and empirically that our methods can still work effectively in this regime.

Discussion. This work introduces methods for directly learning beneficial interventions from obser-
vational data rather than sequential experimentation. While this objective is, strictly speaking, only
possible under stringent assumptions, our approach performs well in both intentionally-misspecified
and complex real-world settings. Adopting a similar philosophy, [15] recently used gradient boosting
to predict glycemic response based on diet (and personal/microbiome covariates), and found they can
naively leverage their regressor to select personalized diets which are superior to those proposed by a
clinical dietitian. However, as treatment-selection in high-impact applications (eg. healthcare) grows
increasingly reliant on supervised learning, it is imperative to properly handle uncertainty/constraints,
and this work provides a principled approach.
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4 Figure S1: Contour plot of relationship Y “ X1 ¨X2 ` ε
depicting outcomes Y expected across covariate-space
rX1, X2s. Black points: the underlying population. Red
points: same population after global shift intervention
T pXq “ X ` r´3, 0s. Gold diamond: optimal feature
configuration if any transformation in the box is feasible.
Light (or dark) green points (along border): best uniform
intervention which can only set X2 (or only X1) to a fixed
value. Blue, purple, and light blue points: individuals who
receive a single-variable personalized intervention, the
direction of the optimal transformation for each is shown.

Figure S1 depicts examples of the different interventions introduced in this work. Under a sparsity
constraint, we must carefully model the underlying population in order to identify the best uniform
intervention (for this population, setting X1 to a large value is superior to intervening on X2). Under
the optimal sparse personalized interventions, different intervention-variables may be chosen for
different individuals, and the direction of the transformation can vary significantly.

S2 Gaussian Process Regression

Gaussian Process regression [16] adopts a prior under which fpxp1qq, . . . , fpxpnqq follow multivariate
Gaussian distribution Npmn,Kn,nq for any collection txpiquni“1. The model is specified by a prior
mean function m : Rd Ñ R and positive-definite covariance function k : Rd ˆ Rd Ñ R which
encodes our prior belief regarding properties of the underlying relationship between X and Y
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(such as smoothness or periodicity). Here, the vector mn P Rn denotes the evaluation of function
m at each point txpiquni“1, and Kn,n denotes the matrix whose i, jth component is kpxpiq, xpjqq.
Given test input points xp1q˚ , . . . , x

pn˚q
˚ P Rd in addition to training data Dn, we additionally define:

f˚ :“ rfpx
p1q
˚ q, . . . , fpx

pn˚q
˚ qs, yn “ ryp1q, . . . , ypnqs, matrix Kn,˚ with i, jth entry kpxpiq, xpjq˚ q

(where xpiq is the ith training input), and matrix K˚,˚ which contains pairwise covariances between
test inputs.

Assuming the noise ε „ Np0, σ2) is independently sampled for each observation, the posterior for f
at the test inputs, f˚ | Dn, follows Npµn˚,Σn˚q distribution with the following mean vector and
covariance matrix:

µn˚ “ m˚ ` pKn,n ` σ
2Iq´1pyn ´mnq, Σn˚ “ K˚,˚ ´K˚,npKn,n ` σ

2Iq´1Kn,˚

Note that our intervention-optimization framework is not specific to this basic GP model, but can be
combined with any algorithm that learns a reasonable posterior for f , such as the superior GP variants
designed for for nonstandard settings including: non-Gaussian response variables [16], non-stationary
relationships [17], deep architectures [18], measurement error [19], and heteroscedastic noise [20].
As comparing various regressors is not our focus, our methodology is evaluated using only the
standard GP regression model, under which the posterior distribution over f is given by the above
expressions. Our GP uses the Automatic-Relevance-Determination (ARD) covariance function, a
popular choice for multivariate data [16]. All hyperparameters of the GP are empirically selected via
marginal-likelihood maximization [16].

S3 Algorithmic Details

To find an optimal transformation of our regularized objective Jλ in (8), we employ the proximal
gradient method described in §3. When λ “ 0 and there is no penalty, we instead use Sequential Least
Squares Programming [21]. However, the intervention objective Jλ may be highly nonconcave. To
deal with local optima in acquisition functions, Bayesian optimization methods employ heuristics like
combining the results of many local optimizers or operating over a fine partitioning of the covariate
space [22, 23]. We instead propose a continuation technique that solves a series of optimization
problems, each of which operates on our objective under a smoothed posterior (and the amount of
additional smoothing is gradually decreased to zero). Excessive smoothing of the posterior is achieved
by simply considering GP models whose kernels are given overly large length-scale parameters. Each
time the amount of smoothing is tapered, we initialize our local optimizer using the solution found
at the previously greater smoothing level. Intuitively, the highly smoothed GP model is primarily
influenced by the global structure in the data, and thus our optimization with respect to the posterior
of this model is far less susceptible to low-quality local maxima. Analysis of a similar homotopy
strategy under radial basis kernels has been conducted by [24].

S3.1 Sparse Shift Intervention

To find the best k-sparse population shift intervention, we use the Sparse Shift Algorithm which relies
on `1 relaxation. As the `1-norm provides the closest convex relaxation to the `0 norm, this is a a
commonly adopted strategy to avoid combinatorial search in feature selection [25]. First, we compute
the regularization path over different settings of the penalty λ ą 0 for the following regularized
objective (which is (8) with all γs “ 1. ):

Jλp∆q :“ F´1
Gnp∆q

pαq ´ λ||∆||1 (9)

which is maximized over the feasible set C∆ :“ t∆ P Rd : x`∆ P Cx for all x P Rdu
(recall we write Gnp∆q :“ GnpT q when T pxq “ x`∆).

Subsequently, we identify the regularization penalty which produces a shift of desired cardinality and
select our intervention set I as the features which receive nonzero shift. Finally, we optimize the
original unregularized objective (λ “ 0) with respect to only the selected features in I to remove
bias induced by the regularizer (Step 3 below). Each inner maximization in both the Sparse Shift and
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Sparse Uniform Intervention algorithms is performed via the proximal gradient methods combined
with our continuation approach discussed previously.

Sparse Shift Algorithm: Identifies best k-sparse shift intervention.

Input: Dataset Dn “ tpxpiq, ypiqquni“1, Posterior f | Dn
Parameters: k P t1, . . . , du specifies the maximal cardinality of the shift vector ∆ P Rd, C∆ Ď Rd
is the set of feasible shifts (ignoring the sparsity constraint), Jλ is our objective function in (8).
1: Set γs “ 1 for s “ 1, . . . , d

2: Perform binary search (over λ) to find:

λ˚ Ð argmin
!

λ ě 0 s.t. ∆˚ :“ argmax
∆PC∆

Jλp∆q has ď k nonzero entries
)

3: Define I Ð supportp∆˚λ˚q Ď t1, . . . , du where ∆˚λ˚ :“ argmax
∆PC∆

Jλ˚p∆q

4: Return: ∆˚ P Rd Ð argmax∆PB J0p∆q where B :“ C∆

Ş
 

∆ P Rd : ∆i “ 0 if i R I
(

Recall that a (sparse) personalized intervention can be equivalently re-expressed as a (sparse) shift
intervention. Thus, we identify the optimal sparse personalized intervention using the same objective
in (8) with Gx in place of Gn, and can also apply the Sparse Shift Algorithm to find the best personal-
ized intervention under a hard cardinality constraint. Note that identifying a sparse transformation of
the covariates is different from feature-selection in supervised learning (where the goal is to identify
dimensions along which f varies most). In contrast, we seek the dimensions I Ă t1, . . . , du along
which one of our feasible covariate-transformations can produce the largest high-probability increase
in f , assuming the other covariates remain fixed at their initial pre-treatment values (in the case of
personalized intervention) or follow the same distribution as the pre-intervention population (in the
case of a global policy).

S3.2 Sparse Uniform Intervention

Another goal is to identify the optimal uniform intervention which sets k of the covariates to particular
fixed constants uniformly across all individuals from the population. We employ the forward step-
wise selection algorithm described below, as the form of the optimization in this case is not amenable
to `1-relaxation. Recall I Ď t1, . . . , du denotes the subset of covariates which are intervened upon,
and the uniform intervention produces vector TI�zpxq P Rd such that TI�zpxqs “ xs if s R I,
otherwise TI�zpxqs “ zs which is a constant chosen by the policy-maker. This same transformation
is applied to each individual in the population, creating a more homogeneous group which share the
same value for the covariates in I. For a given I, the objective function to find the best constants is:

Junif
I

`

tzsusPI
˘

:“ F´1
GnpTI�zq

pαq (10)

with GnpTI�zq “
1

n

n
ÿ

i“1

“

fpzpiqq ´ fpxpiqq
‰

| Dn where zpiqs “

"

xpiq if s R I
zs otherwise

which is maximized over the constraints: zs P Cs Ď R for s P I.
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Sparse Uniform Intervention Algorithm: Identifies best k-sparse uniform intervention.

Input: Dataset Dn “ tpxpiq, ypiqquni“1, Posterior f | Dn
Parameters: k P t1, . . . , du specifies the maximal number of covariates which may be set by the
uniform intervention, C1, . . . , Cd Ď R are sets of feasible settings for each covariate.
1: Initialize I Ð ∅, U Ð t1, . . . , du, J˚ Ð 0

2: While |I| ă k:

3: Set J˚s Ð max
Cr:rPIYtsu

Junif
IYtsu

`

tzrurPIYtsu
˘

for each s P U

4: Find s˚ Ð argmaxsPU
 

J˚s
(

5: If J˚s˚ ą J˚: J˚ Ð J˚s˚ , I Ð I Y ts˚u, U Ð Uzs˚

6: Else: break
7: Return: tz˚s usPI Ð argmaxCs:sPI Junif

I
`

tzsusPI
˘

S4 Theoretical Results

Consider the following basic conditions: (A1) all data lies in C :“ r0, 1sd, (A2) 0 ă α ď 0.5.
Throughout this section, we assume (A1), (A2), and the conditions laid out in §1 hold. For clarity,
we rewrite the true underlying relationship as f˚, letting f now denote arbitrary functions. Our
results are with respect to the true improvement of an intervention G˚xpT q :“ f˚pT pxqq ´ f˚pxq,
G˚XpT q :“ EX rG˚xpT qs (note that G˚x, G

˚
X are no longer random). Our theory relies on Gaussian

Process results derived by [26], and we relegate proofs and technical definitions to §S9.

Theorem 1. Suppose we adopt a GP
`

0, kpx, x1q
˘

prior and the following conditions hold:

(A3) noise variables εpiq iid„ Np0, σ2q (A4) there exist ρ ą 0 such that the Hölder space Cρr0, 1sd
has probability one under our prior (see [26]). (A5) f˚ and any f supported by the prior are
Lipschitz continuous over C with constant L (A6) the density of our input covariates pX P ra, bs is
bounded above and below over domain C.

Then, for all x, T pxq P C: EDn

ˇ

ˇ

ˇ
F´1
GxpT q

pαq ´G˚xpT q
ˇ

ˇ

ˇ
ď
C

α

´

L`
1

a

¯

¨Ψf˚pnq
1{r2pd`1qs

Here, constant C depends on the prior and density pX , and we define:

Ψf pnq :“

#

“

ψ´1
f pnq

‰2
if ψ´1

f pnq ď n´d{p4ρ`2dq

n ¨ rψ´1
f˚ pnqs

p4ρ`4dq{d otherwise

ψ´1
f˚ pnq is the (generalized) inverse of ψf˚pεq :“

φf˚ pεq

ε2 which depends on the concentration function
φf˚pεq “ inf

hPHk:||h´f˚||8ăε
||h||2k ´ log Π

`

f : ||f ||8 ă ε
˘

. φf˚ measures how well the RKHS of

our GP prior Hk approximates f˚ (see [26] for more details). The expectation EDn is over the
distribution of the data tpXpiq, Y piqquni“1. Importantly, Theorem 1 does not assume anything about
the true relationship f˚, and the bound depends on the distance between f˚ and our prior. When
f˚ is a ρ-smooth function, a typical bound is given by ψ´1

f˚ pnq “ Opn´mintν,ρu{p2ν`dqq if k is the
Matérn kernel with smoothness parameter ν. When k is the squared exponential kernel and f˚ is
β-regular (in Sobolev sense), ψ´1

f˚ pnq “ Opp1{ log nqβ{2´d{4q [26].

Theorem 2. Under the assumptions of Theorem 1, for any T such that PrpT pXq P Cq “ 1:

EDn

ˇ

ˇ

ˇ
F´1
GnpT q

pαq ´G˚XpT q
ˇ

ˇ

ˇ
ď
C

α

”

L

c

d

n
`

´

L`
1

a

¯

Ψf˚pnq
1

2pd`1q

ı
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S5 Simulation Study

Over the simulated data summarized in Figure S2, we apply our basic personalized intervention
method (α “ 0.05) with purely local optimization (standard) and our continuation technique
(smoothed), which significantly improves results. For each of the 100 datasets, we randomly sampled
a new point (from the same underlying distribution) to receive a personalized intervention. The
magnitude of each intervention is bounded by 1, except for in data from the quadratic relationship.
We also infer sparse interventions (with a cardinality constraint of 2 for the linear and quadratic
relationships, 1 for the product relationship). When Y “ X1 ¨ X2 ` ε, the optimal (constrained)
intervention may drastically vary depending upon the individual’s covariate values, and our algorithm
is able to correctly infer this behavior (Simulation C). Finally, we also apply a variant of our method
which entirely ignores uncertainty (α “ 0.5). While this approach is on average better for larger sam-
ple sizes, highly harmful interventions are occasionally proposed, whereas our uncertainty-adverse
method (α “ 0.05) is much less prone to producing damaging interventions (preferring to abstain by
returning T pxq “ x instead). This is an invaluable characteristic since interventions generally require
effort and are only worth conducting when they are likely to produce a substantial benefit.

Figure S3 displays the behavior of both the population shift intervention in the linear setting, and
the population uniform intervention under the quadratic relationship. The population intervention is
notably safer than the individually tailored variants, producing no negative changes in our experiments.

(A) Linear: fpXq “ 0.3X1 ` 0.7X2 (B) Quadratic: fpXq “ 1´X2
1 ´X

2
2

(C) Product: fpXq “ X1 ¨X2

Figure S2: The mean (solid) and 0.05th quantile (dashed) expected outcome change produced under
personalized interventions suggested by various methods, over 100 datasets of each sample size.
Each dataset contains 10-dimensional covariates, with Xi „ Unifr´1, 1s, and Y is determined by
the indicated relationships and additive Gaussian noise (σ “ 0.2). The black lines indicate the best
possible expected outcome change (when the best change depends on which individual received the
intervention, the black solid/dashed lines indicates the mean and 0.05th quantile over our 100 trials).
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(A) Linear: fpXq “ 0.3X1 ` 0.7X2 (B) Quadratic: Y “ 1´X2
1 ´X

2
2

Figure S3: The mean (solid) and 0.05th quantile (dashed) expected outcome change produced by our
population intervention method, over 100 datasets for each sample size (same setting as in Figure
§S2). The black line indicates the best possible expected outcome improvement.

S6 Population Intervention for Gene Perturbation

Next, we applied our method to search for population interventions in observational yeast gene
expression data from [27]. We evaluated the effects of proposed interventions (restricted to single
gene knockouts) over a set X of 10 transcription factors (n “ 161) with the goal of down-regulating
each of a set of 16 small molecule metabolism target genes, Y . Results for all methods are compared
to the actual expression change of the target gene found experimentally under individual knockouts
of each transcription factor in X . Compared to marginal linear regressions and multivariate linear
regression, our method’s uncertainty prevents it from proposing harmful interventions, and the
interventions it proposes are optimal or near optimal (Figure S4).

Insets (a) and (b) in Figure S4 show empirical marginal distributions between target gene TSL1
and members of X identified for knockout by our method (CIN5) and marginal regression (GAT2).
From the linear perspective, these relationships are fairly indistinguishable, but only CIN5 displays
a strong inhibitory effect in the knockout experiments. Inset (c) shows the empirical marginal for
a harmful intervention proposed by multivariate regression for down-regulating GPH1, where the
overall correlation is significantly positive, but the few lowest expression values (which influence our
GP intervention objective the most) do not provide strong evidence of a large knockdown effect.
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Figure S4: Actual effects of proposed interventions (single gene knockout) over a set transcription
factors on down-regulation of each of a set of 16 small molecule metabolism target genes.

S6.1 Details

The data set used for this analysis contains gene expression levels for a set of wild type (ie. ‘observa-
tional’) samples, Dobs pn “ 161q, as well as for a set of ‘interventional’ samples, Dint, in which each
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individual gene was serially knocked out. In our analysis, we search for potential interventions for
affecting the expression of a desired target gene by training our GP regressor on Dobs and determining
which knockout produces the best value of our empirical uniform population intervention objective
(for down-regulating the target). Subsequently, we use Dint to evaluate the actual effectiveness of
proposed interventions in the knockout experiments. We only search for interventions present in Dint
(single gene knockouts) rather than optimizing to infer optimal covariate transformations.

As candidate genes for this analysis we used only the 700 genes that [27] classified as responsive
mutants (at least four transcripts show robust changes in response to the knockout). Furthermore, we
omitted genes whose expression over the 161 observational samples had standard deviation ă 0.1.
Out of the transcription factors present in the remaining set of genes, we defined the top 10 factors as
our covariate set X , after ranking the transcription factors by the difference between their expression
when they were knocked out in the interventional data and their 0.1th quantile expression level in
the observational data. This was to ensure that our model would be trained on data that at least
resembled the experimental data Dint. The set of genes to down-regulate was simply chosen to be
those classified by [27] as small molecule metabolism genes that met the minimum standard deviation
requirement in their observational expression marginal distribution. The resulting set was 16 target
genes, and the (negative) expression of each of was treated as an outcome Y in our analyses.

Each method evaluated in this analysis was to propose an intervention (single gene knockout) to
down-regulate the expression of each target gene (separately). Once a gene to knock out was proposed,
this intervention was evaluated by comparing the resulting expression of the target when the proposed
knockout was actually performed in the experimental data Dint. This expression level could then be
compared to the ‘optimal’ choice of gene from X to intervene upon (the gene in X whose knockout
produced the largest down-regulation of the target in Dint).
We compared our approach against two methods popularly used to draw conclusions about affecting
outcomes in the sciences. First, we applied a multivariate regression analysis in which a linear
regression model was fit to the observations of pX,Y q in Dobs. The best gene to knockout was inferred
on the basis of the regression coefficients and expression values (if no beneficial regression coefficient
was found statistically significant at the 0.05 level under the standard t-test, then no intervention was
proposed). Second, we performed a marginal analysis in which separate univariate linear regression
models were fit to pX1, Y q, . . . , pXd, Y q, and the best knockout was again inferred on the basis of
the regression coefficients and expression values (again, no intervention was recommended if there
was no statistically significant beneficial regression coefficient at the 0.05 level, after correcting for
multiple testing via the False Discovery Rate).

Figure S4 compares the results produced by these methods to the optimal intervention over X
for down-regulating each Y , as found in the experimental data Dint. Of the 16 small molecule
metabolism target genes tested, in three cases our method proposed an intervention which was found
to be optimal or near optimal in Dint, while in the remaining cases, the model uncertainty causes the
method not to recommend any intervention (except for one very minorly harmful intervention for
target SAM3). On the other hand, neither form of linear regression proposed effective interventions
for any target other than FKS1, and in some cases, the linear regressors proposed counterproductive
interventions that up-regulated the target. This highlights the importance of a model that properly
accounts uncertainty when evaluating potential interventions.

S7 Personalized Intervention for Writing Improvement

We demonstrate our personalized intervention methodology in a setting with rich nonlinear underlying
relationships. Here, it is applied to the task of transforming a given news article into one which will be
more widely-shared on social media. The observed data contain various covariates about individual
Mashable articles along with their subsequent popularity in social networks [28]. We train a GP
regressor on 5,000 articles labeled with popularity-annotations and evaluate sparse interventions on a
held-out set of 300 articles based on changes they induce in article benchmark popularity (defined
below). When α “ 0.05, the average benchmark popularity increase produced by our personalized
intervention methodology is 0.59, whereas it statistically significantly decreases to 0.55 if α “ 0.5 is
chosen. Thus, even given this large sample size, ignoring uncertainty appears detrimental for this
application, and α “ 0.5 results in 4 articles whose benchmark popularity worsens post-intervention
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(compared to only 2 for α “ 0.05). Nonetheless, both methods generally produce very beneficial
improvements in this analysis, as seen in Figure S5.

As an example of the personalization of proposed interventions, our method (α “ 0.05) generally
proposes different sparse interventions for articles in the Business category vs. the Entertainment cate-
gory. On average, the sparse transformation for business articles uniquely advocates decreasing global
sentiment polarity and increasing word count (which are not commonly altered in the personalized
interventions found for entertainment articles), whereas interventions to decrease title subjectivity
are uniquely prevalent throughout the entertainment category. These findings appear intuitive (eg.
critical business articles likely receive more discussion, and titles of popular entertainment articles
often contain startling statements written non-subjectively as fact). Interestingly, the model also
tends to advise shorter titles for business articles, but increasing the length for entertainment articles.
Articles across all categories are universally encouraged to include more references to other articles
and keywords that were historically popular.

S7.1 Details

The data consist of 39,000 news articles published by Mashable around 2013-15 [28]. Each article is
annotated with the number of shares it received in social networks (which we use as our outcome
variable after log-transform and rescaling). A multitude of covariates have been extracted from each
article (eg. word count, the category such as “tech” or “lifestyle”, keyword properties), many of which
[28] produced using natural language processing algorithms (eg. subjectivity, polarity, alignment with
topics found by Latent Dirichlet Allocation). After removing many highly redundant covariates, we
center and rescale all variables to unit-variance (see Table S2 for a complete description of the 29
covariates used in this analysis).

We randomly partition the articles into 3 disjoint groups: a training set (5,000 articles on which
scaling-factors are computed and our GP regressor is trained), an improvement set (300 articles
we find interventions for), and a held-out set (over 34,000 articles used for evaluation). A large
group is left out for validation to ensure there are many near-neighbors for any given article, so
we can reasonably estimate the true expected popularity given any setting of the article-covariates.
Subsequently, a basic GP regression model is fitted to the training set. As the predictive power of
our GP regressor does not measurably benefit from ARD covariate-weighting, we simply use the
squared exponential kernel. Over the held-out articles, the Pearson correlation between the observed
popularity and the GP (posterior mean) predictions is 0.35. Furthermore, there is a highly significant
(p ă 8 ¨ 10´41) positive correlation of 0.07 between the model’s predictive variance and the actual
squared errors of GP predictions over this held-out set. Our model is thus able to make reasonable
predictions of popularity based on the available covariates, and its uncertainty estimates tend to be
larger in areas of the covariate-space where the posterior mean lies further from actual popularity
values.

In this analysis, we compare our personalized intervention methodology which rejects uncertainty
(using α “ 0.05) with a variant of the this approach that ignores uncertainty (using the same objective
function with α “ 0.5). Both methods share the same GP regressor, optimization procedure, and
set of constraints. For the 300 articles in the intervention set (not part of the training data) we allow
intervening upon all covariates except for the article category which presumably is fixed from an
author’s perspective. All covariate-transformations are constrained to lie within [-2,2] of the original
(rescaled) covariate value, and we impose a sparsity constraint that at most 10 covariates can be
intervened upon for a given article.

Unfortunately, no pre-and-post-intervention articles are available for us to ascertain a ground truth
evaluation. To crudely measure performance, we estimate the underlying expected popularity of
a given covariate-setting using benchmark popularity: the (weighted) average observed popularity
amongst 100 nearest neighbors (in the covariate-space) from the set of held-out articles (with weights
based on inverse Euclidean distance). Over our improvement set, the Pearson correlation between
articles’ observed popularity and benchmark popularity is 0.28 (highly significant: p ď 2 ¨ 10´10).
This approach thus appears to be, on average, a reasonable way to benchmark performance (even
though nearest-neighbor held-out articles can individually differ from the text of a particular pre/post-
intervention article despite sharing similar values of our 29 measured covariates).
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Figure S5 depicts the results of our personalized intervention for each article in our intervention
set. The expected improvement produced by a particular intervention is estimated as the differ-
ence between the benchmark popularity of the post-intervention covariate-settings and the original
covariate-settings of the article receiving the personalized intervention. Table S1 summarizes these
results. A paired-sample t-test suggests our method is significantly superior on average (p ă 2 ¨10´6).

Figure S5: Benchmark popularity changes
produced by the personalized interventions
for 300 articles suggested by our method
with α “ 0.05 (Rejecting Uncertainty) vs.
α “ 0.5 (Ignoring Uncertainty). The points
(ie. articles) are colored according to the
value of our personalized intervention ob-
jective with α “ 0.05. Using α “ 0.05
outperforms α “ 0.5 in this analysis in
177/300 articles in the improvement set.

Method Mean Median 0.05th Quantile Num. Negative

Rejecting Uncertainty 0.586 0.578 0.126 2
Ignoring Uncertainty 0.552 0.555 0.105 4

Table S1: Summary statistics for the benchmark popularity change produced by each method over
the 300 articles of the intervention set. The last column counts the number of harmful interventions
(with change ă 0).

To provide concrete examples, we present some articles of the Business and Entertainment categories
(taken from our improvement set). For this business article: http://mashable.com/2014/07/30/
how-to-beat-the-heat/, our method proposes shifting the following 10 covariates (see Table S2
for covariate descriptions):

num_hrefs: +2, num_self_hrefs: -1.25, average_token_length: -1.771, kw_avg_min:
+1.71, kw_avg_avg: +2, self_reference_min_shares: +2, self_reference_max_shares: +1.68,
self_reference_avg_sharess: +2, global_subjectivity: +1.57, global_sentiment_polarity: -2

For this entertainment article: http://mashable.com/2014/07/30/how-to-beat-the-heat/,
our method proposes shifting the following 10 covariates:

average_token_length: -1.55, kw_avg_min: + 1.63, kw_avg_avg: +2, self_reference_min_shares: +2
self_reference_max_shares: +1.85, self_reference_avg_shares: +2.0, LDA_00: +1.63, LDA_01: -2,
LDA_04: +0.82, global_subjectivity: +1.62

Indifferent to uncertainty, the method with α “ 0.5 advocates shifting all these covariates by the
˘2 maximal allowed amounts, which leads to a 0.04 worse improvement in benchmark popularity
compared with the covariate changes specified above for this article.
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Covariate Description

n_tokens_title Number of words in the title

n_tokens_content Number of words in the content

n_unique_tokens Rate of unique words in the content

n_non_stop_words Rate of non-stop words in the content

num_hrefs Number of links

num_self_hrefs Number of links to other articles published by Mashable

average_token_length Average length of the words in the content

num_keywords Number of keywords in the metadata

data_channel_is_lifestyle Is the article category “Lifestyle”?

data_channel_is_entertainment Is the article category “Entertainment”?

data_channel_is_bus Is the article category “Business”?

data_channel_is_socmed Is the article category “Social Media”?

data_channel_is_tech Is the article category “Tech”?

data_channel_is_world Is the article category “World”?

kw_avg_min Avg. shares of articles with the least popular keyword used for this article

kw_avg_max Avg. shares of articles with the most popular keyword used for this article

kw_avg_avg Avg. shares of the average-popularity keywords used for this article

self_reference_min_shares Min. shares of referenced articles in Mashable

self_reference_max_shares Max. shares of referenced articles in Mashable

self_reference_avg_shares Avg. shares of referenced articles in Mashable

LDA_00 Closeness to first LDA topic

LDA_01 Closeness to second LDA topic

LDA_02 Closeness to third LDA topic

LDA_03 Closeness to fourth LDA topic

LDA_04 Closeness to fifth LDA topic

global_subjectivity Subjectivity score of the text

global_sentiment_polarity Sentiment polarity of the text

title_subjectivity Subjectivity score of title

title_sentiment_polarity Sentiment polarity of title

Table S2: The 29 covariates of each article (dimensions of X in this analysis). Covariates involving
the share-counts of other articles and LDA were based only on data known before the publication
date.

S8 Misspecified Interventions

Our methodology heavily relies on the assumption that the outcome-determining covariate values
rx produced through intervention exactly match the desired covariate transformation T pxq. When
transformations are only allowed to alter at most k ă d covariates, this requires that we can intervene
to alter only this subset without affecting the values of other covariates. If T specifies a sparse change
affecting only a subset of the covariates I Ă t1, . . . , du, our methods assume the post-treatment
value of any non-intervened-upon covariate remains at its initial value (ie. rxs “ xs @s R I).

However, in many domains (such as our gene perturbation example when the profiled genes belong to a
common regulatory network), the covariate-transformation produced by a sparse external intervention
can only be roughly controlled. Let TI�z denote a uniform transformation which sets a subset of
covariates in I Ă t1, . . . , du to constant values zI P R|I| across all individuals in the population. In
this section, we consider an alternative assumption under which the intervention applied in hopes
of achieving TI�z propagates downstream to affect other covariates outside I (so there may exist
s R I: rxs ‰ xs), which we formalize as the do-operation in the causal calculus of [29]. Here, we
suppose the underlying population of X,Y follows a structural equation model (SEM) [29]. The
outcome Y is restricted to be a sink node of the causal DAG, so we can still write Y “ f˚p rXq`ε and
maintain the other conditions from §1. Rather than exhibiting covariate-distribution TI�zpXq with
Y “ f˚pTI�zpXqq ` ε (as presumed in our methods), the post-treatment population which arises
from an intervention seeking to enact transformation TI�z is now assumed to follow the distribution
specified by ppX,Y | dopXI “ zIqq. Note that the do-operation here is only applied to some nodes
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in the DAG (variables in subset I) as discussed by [30], but its effects can alter the distributions of
non-intervened-upon covariates outside of I which lie downstream in the DAG.

Theorem 3. For some I Ď t1, . . . , du, suppose the condition: (A7) papY q Ď I
Ť

descpIqC holds.
Then, for any uniform transformation TI�z: EX

“

f˚pTI�zpxqq ´ f
˚pxq

‰

and
E
rx„dopXI“zIq

“

f˚prxq
‰

´ EX
“

f˚pxq
‰

are equal.

Here, papY q denotes the variables which are parents of outcome Y in the underlying causal DAG,
and descpIqC is the set of variables which are not descendants of variables in subset I. For the next
result, we define: I˚ :“ argmin

!

|I 1| s.t. D TI1�z P argmax
TI�z :|I|ďk

EX
“

f˚pTI�zpxqq ´ f
˚pxq

‰

)

as the

intervention set corresponding to the optimal k-sparse uniform transformation (where in the case
of ties, the set of smallest cardinality is chosen), if transformations were exactly realized by our
interventions (which is not necessarily the case in this section).

Theorem 4. Suppose the underlying DAG satisfies: (A8) No variable in papY q is a descendant of
other parents, ie. E j P papY q s.t. j P descppapY qztjuq. Then, I˚ satisfies (A7).

In the absence of extremely strong interactions between variables in papY q, the equality of Theorem
3 will also hold for I˚ if |papY q| ď k. For settings where sparse interventions elicit unintentional
do-effects and the causal DAG meets condition (A8), Theorems 3 and 4 imply that, under complete
certainty about f˚, the (minimum cardinality) maximizer of our uniform intervention objective corre-
sponds to an transformation that produces an equally good outcome change when the corresponding
intervention is actually realized as a do-operation in the underlying population. Combined with
Theorem 2, our results ensure that, even in this misspecified setting, the empirical maximizer of our
sparse uniform intervention objective (5) produces (in expectation as nÑ8) beneficial interventions
for populations whose underlying causal relationships satisfy certain conditions.

S8.1 Empirical Results

Next, we empirically investigate how effective our methods are in this misspecified SEM setting,
where a proposed sparse population transformation is actually realized as a do-operation and can
therefore unintentionally affect other covariates in the post-intervention population. We generate
data from an underlying linear non-Gaussian SEM, and where Y is a sink node in the corresponding
causal DAG. Our approach to identify a beneficial sparse population intervention is compared with
inferring the complete SEM using the LinGAM estimator of [31] and subsequently identifying the
optimal single-node do-operation in the inferred SEM. Note that LinGAM is explicitly designed
for this setting, while both our method and the relied-upon Gaussian Process model are severely
misspecified.

Figures S6A and S6B demonstrate that the inferred best single-variable shift population intervention
(under constraints on the magnitude of the shift) matches the performance the interventions suggested
by LinGAM (except for in rare cases with tiny sample size) when the proposed interventions are
evaluated as do-operations in the true underlying SEM. Thus, we believe a supervised learning
approach like ours is preferable in practical applications where interpreting the underlying causal
structure is not as important as producing good outcomes (especially for higher dimensional data
where estimation of the causal structure becomes difficult [30]).

The assumption of sparse interventions realized as a do-operation (as defined by [30]) may also be
an inappropriate in many domains, particularly if off-target effects of interventions are explicitly
mitigated via external controls. To appreciate the intricate nature of assumptions regarding non-
intervened-upon variables, consider our example of modeling text documents represented using two
covariates: polarity and word count. A desired transformation to increase the text’s polarity can
be accomplished by inserting additional positive adjectives, but such an intervention also increases
articles’ word count. Alternatively, polarity may be identically increased by replacing words with
more positive alternatives, an external intervention which would not affect the word count (and thus
follows the assumptions of our framework).
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Figure S6: The average (solid) and 0.05th quantile (dashed) expected outcome change produced by
our method (red) vs LinGAM (blue) over 100 datasets drawn from two underlying SEMs chosen by
Shimizu et al. [31]. The black dashed line indicates the best possible improvement in each case.

S8.2 Additional Details

In our analysis, we suppose that a desired transformation upon variable s P t1, . . . , du cannot
be enacted exactly and the Y which arises post-treatment is distributed according to dopXs “

ErXss `∆q, where ErXss is the mean of the pre-treatment marginal distribution of the sth covariate.
In this case, do-effects can propagate to other covariates which are descendants of s in the DAG
because the values of descendant variables are redrawn from the do-distribution which arises as
a result of shifting ErXss. Because all relationships are linear in our SEMs, the actual expected
outcome change resulting from a particular shift (resulting from the corresponding do-operation) is
easily obtained in closed form.

Our GP framework is applied to the data to infer an optimal 1-sparse shift population intervention
(only interventions on a single variable are allowed). The maximal allowed magnitude of the shift is
constrained to ensure the optimum is well-defined (to˘1 times the standard deviation of each variable
in the underlying SEM distribution). An alternative approach to improve outcomes in contrast to
our black-box approach is to apply a causal inference method like LinGAM [31] to estimate the
SEM from the data, and then identify the optimal single-variable shift ∆˚s in the LinGAM-inferred
SEM (since all inferred relationships are also linear, the optimal single-variable shift will be either
0 or the lower/upper allowed shift and we simply search over these possibilities). We compare our
approach against LinGAM by evaluating the actual expected outcome change produced by the shift
∆˚s proposed by each method (where the actual expected outcome change is found by analytically
performing the dopXs “ xs `∆˚s q operation in the true underlying SEM) .

In our experiment, two underlying SEM models are considered which were used by [31] to demon-
strate the utility of their LinGAM method (albeit with impractically large sample size = 10,000).
SEMA is used to refer to the model depicted in Figure 3 of [31], where we define Y as x6 (a sink
node in the causal DAG). SEMB denotes the underlying model of Figure 4 in the same paper (Y is
defined as sink node x7). The remainder of the variables in each SEM are adopted as our observed
covariates X .

This experiment represents an application of our method in a highly misspecified setting. The true
data-generating mechanism differs significantly from assumptions of our GP regressor (output noise
is now fairly non-Gaussian, the underlying relationships are all linear while we use an ARD kernel).
Furthermore, an intervention to transform a single covariate incurs a multitude of unintentional off-
target effects resulting from the do-effects propagating to downstream covariates in the SEM, whereas
our method believes only the chosen covariate is changed. In contrast, this data exactly follows
the special assumptions required by LinGAM, and we properly account for inferred downstream
do-operation effects when identifying the best inferred intervention under LinGAM. The only
disadvantage of the LinGAM method is that it does not know the direction of the causal relationship
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X Ñ Y (although we found it always estimated this direction correctly except on rare occasions with
tiny sample sizes of n “ 20).

Since LinGAM only estimates linear relations, the best inferred shift-intervention found by this
approach will always be 0 or the minimal/maximal shift allowed for a particular covariate. Searching
over these three values for each covariate ensures the actual optimal shift will be recovered if
the LinGAM SEM-estimate were correct. However, under our approach, identifying the optimal
population shift-intervention requires solving an optimization problem. Even if the GP regression
posterior were to exactly reflect the true data-generating mechanism, our approach might get stuck in
a suboptimal local maximum or avoid the minimal/maximal allowed shift due to too much uncertainty
about f in the resulting region of covariate-space. In practice, these potential difficulties do not pose
much of an issue for our approach.

S9 Proofs

Notation and Definitions

All points x P Rd lie in convex and compact domain C Ă Rd.

C denotes constants whose value may change from line to line.

All occurrences of f are implicitly referring to f | Dn.

µnp¨q, σ2
np¨q, and σnp¨, ¨q respectively denote the mean, variance, and covariance function of our

posterior for f | Dn under the GP
`

0, kpx, x1q
˘

prior.

F´1
Z pαq denotes the αth quantile of random variable Z.

Φ´1p¨q denotes the Np0, 1q quantile function.

|| ¨ ||k denotes the norm of reproducing kernel Hilbert space Hk.

Bδpxq Ă Rd denotes the ball of radius δ centered at x P C.

I Ď t1, . . . , du represents the set of variables which are intervened upon in sparse settings.

papY q denotes the set of variables which are parents of Y in a causal directed acyclic graph (DAG)
[29]

descpIq is the set of variables which are descendants of at least one variable in I according to the
causal DAG.

AC denotes the complement of set A.

The squared exponential kernel (with length-scale parameter l ą 0) is defined:

kpx, x1q “ exp
´

´
1

2l2
||x´ x1||2

¯

The Matérn kernel (with another parameter ν ą 0 controlling smoothness of sample paths) is defined:

kpx, x1q “
21´ν

Γpνq
rνBνprq where r “

?
2ν

l
||x´ x1||, Bν is a modified Bessel function

A function f is Lipschitz continuous with constant L if: |fpxq ´ fpx1q| ď L|x ´ x1| for every
x, x1 P C.

Suppose ρ ą 0 is expressed as ρ “ m` η for nonnegative integer m and 0 ă η ď 1.
The Hölder space Cρr0, 1sd is the space of functions with existing partial derivatives of orders
pk1, . . . , kdq for all integers k1, . . . , kd ě 0 satisfying k1 ` ¨ ¨ ¨ ` kd ď m. Additionally, each
function’s highest order partial derivative must form a function h that satisfies: |hpxq ´ hpyq| ď
C|x´ y|η for any x, y.
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Theorem 5 (van der Vaart & van Zanten [26]). Under the assumptions of Theorem 1:

EDn

ż ż

C
rfpxq ´ f˚pxqs2pXpxqdx dΠnpf | Dnq ď C ¨Ψf˚pnq

where Ψ´1
f˚ pnq is defined as in §S4. See [26] for a detailed discussion about this function.

Proof of Theorem 1

Proof. Recall GxpT q :“ fpT pxqq ´ fpxq | Dn depends on f . We fix x0, T px0q P C and adapt the
bound provided by Theorem 5 to show our result. Let Bδpxq Ă C denote the ball of radius 0 ă δ ă 1

2
centered at x P C. We first establish the bound:

ż

C

ˇ

ˇfpxq ´ f˚pxq
ˇ

ˇpXpxq dx

ě

ż

Bδpx0q

ˇ

ˇfpxq ´ f˚pxq
ˇ

ˇpXpxq dx`

ż

BδpT px0qq

ˇ

ˇfpxq ´ f˚pxq
ˇ

ˇpXpxq dx

ěa ¨ VolpBδq
”

min
xPBδpx0q

ˇ

ˇfpxq ´ f˚pxq
ˇ

ˇ` min
xPBδpT px0qq

ˇ

ˇfpxq ´ f˚pxq
ˇ

ˇ

ı

ěa ¨ VolpBδq ¨
”
ˇ

ˇ

ˇ
fpT px0qq ´ fpx0q ´

“

f˚pT px0qq ´ f
˚px0q

‰

ˇ

ˇ

ˇ
´ 8δL

ı

ěa ¨ VolpBδq ¨
”
ˇ

ˇ

ˇ
Gx0

pT q ´G˚x0
pT q

ˇ

ˇ

ˇ
´ 8δL

ı

(11)

where VolpBδq “ Opδdq. Theorem 5 implies the following inequality (ignoring constant factors):

rC¨Ψf˚pnqs
1{2

ě

«

EDn

ż ż

C
rfpxq ´ f˚pxqs2pXpxq dx dΠnpf | Dnq

ff1{2

ěEDn

ż ż

C

ˇ

ˇfpxq ´ f˚pxq
ˇ

ˇpXpxq dx dΠnpf | Dnq by Jensen’s inequality

ěaδd ¨ EDn

ż

ˇ

ˇGx0pT q ´G
˚
x0
pT q

ˇ

ˇ´ δL dΠnpf | Dnq via the bound from (11)

“´ aLδd`1 ` aδd ¨ EDn

ż 8

0

Pr
´

ˇ

ˇGx0pT q ´G
˚
x0
pT q

ˇ

ˇ ě r
¯

dr

“´ aLδd`1 ` aδd ¨ EDn

ż 1

0

F´1
|Gx0

pT q´G˚x0
pT q|
prαq drα

ě´ aLδd`1 ` aδd ¨ EDn

ż 1

α

F´1
Gx0

pT qprαq ´G
˚
x0
pT q drα

ě´ aLδd`1 ` ap1´ αqδd ¨ EDn

”

F´1
Gx0

pT qpαq ´G
˚
x0
pT q

ı

(12)

We can similarly bound G˚x0
pT q ´ F´1

Gx0
pT qpαq:

´ aLδd`1 ` aδd ¨ EDn

ż 1

0

F´1
|G˚x0

pT q´Gx0
pT q|
prαq drα

ě´ aLδd`1 ` aδd ¨ EDn

ż α

0

G˚x0
pT q ´ F´1

Gx0 pT q
prαq drα

ě´ aLδd`1 ` aαδd ¨ EDn

”

G˚x0
pT q ´ F´1

Gx0
pT qpαq

ı

(13)

Choosing δ :“ rΨf˚pnqs
1

2pd`1q and combining (12) and (13) produces the desired result, since
assuming α ă 0.5 implies α ă 1´ α.
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Proof of Theorem 2

Proof. Combining the results of Lemmas 1 and 2 below, we obtain the desired upper bound through
a straightforward application of the triangle inequality. Note that we’ve simplified the bound using
the identity ´ logp1´ αq ă 1{α for α ă 0.5.

Lemma 1. Under the assumptions of Theorem 2, for any x, T pxq P C:

EDn

ˇ

ˇ

ˇ
F´1
GnpT q

pαq ´ F´1
GXpT q

pαq
ˇ

ˇ

ˇ
ď C ¨

”

´L2d

n
logp1´ αq

ı1{2

Proof of Lemma 1. Define random variables Zi :“ fpT pxpiqq ´ fpxpiqq | Dn for i “ 1, . . . , n.
Note that these variables all share the same expectation: EX rZs :“ EX rZis “ GXpT q andGnpT q “
1
n

řn
i“1 Zi. The Lipschitz continuity of f combined with the fact that C “ r0, 1sd implies: Zi P

r´L
?
d, L

?
ds for all i. Thus, Hoeffding’s inequality ensures:

Pr

˜
ˇ

ˇ

ˇ

ˇ

ˇ

GnpT q ´GXpT q

ˇ

ˇ

ˇ

ˇ

ˇ

ě t

¸

ď 2 exp

˜

´nt2

2L2d

¸

ñ F´1
ˇ

ˇGnpT q´GXpT q
ˇ

ˇ

pαq ď C ¨
”

´L2d

n
logp1´ αq

ı1{2

Because posteriors GnpT q, GXpT q follow a Gaussian distribution:

F´1
GnpT q

pαq ´ F´1
GXpT q

pαq ď F´1
ˇ

ˇGnpT q´GXpT q
ˇ

ˇ

pαq

and F´1
GXpT q

pαq ´ F´1
GnpT q

pαq ď F´1
ˇ

ˇGnpT q´GXpT q
ˇ

ˇ

pαq

Lemma 2. Under the assumptions of Theorem 2, for any x, T pxq P C:

EDn

ˇ

ˇ

ˇ
F´1
GXpT q

pαq ´G˚XpT q
ˇ

ˇ

ˇ
ď
C

α
¨

´

L`
1

a

¯

¨ rΨf˚pnqs
1{r2pd`1qs

Proof of Lemma 2. A similar argument as the proof of Theorem 1 applies here. We again first bound:
ż

C

ˇ

ˇfpxq ´ f˚pxq
ˇ

ˇpXpxq dx

ěa ¨ VolpBδq ¨

«

ż

C

ˇ

ˇfpxq ´ f˚pxq
ˇ

ˇpXpxq dx`

ż

C

ˇ

ˇfpT pxqq ´ f˚pT pxqq
ˇ

ˇpXpxq dx´ 8δL

ff

ěa ¨ VolpBδq ¨

«

ˇ

ˇ

ˇ
EX rfpxq ´ f˚pxqs ` EX rfpT pxqq ´ f˚pT pxqqs

ˇ

ˇ

ˇ
´ 8δL

ff

Following the same reasoning as in the proof of Theorem 1, we obtain (up to constant factors):

´aLδd`1 ` aαδd ¨ EDn

”

G˚XpT q ´ F
´1
GXpT q

pαq
ı

ď rC ¨Ψf˚pnqs
1{2

and we can use the same argument to similarly bound

EDn

”

F´1
GXpT q

pαq ´G˚XpT q
ı
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Proof of Theorem 3

Here, we employ subscripts to index particular covariates of X . The notation raR, aSs “ a P Rd is
used to denote a vector assembled from disjoint subsets of dimensions R,S Ď t1, . . . , du. Regardless
of the ordering of these partitions in our notation, we assume they are correctly arranged in the
assembled vector based on their subscript-indices (ie. a “ raR, aSs “ raS , aRs).

Proof.

EdopXI“zIq

“

f˚pxq
‰

“

ż

f˚
`

rxIC , zIs
˘

p
`

xIC | dopXI “ zIq
˘

dxIC

“

ż ż

f˚
`

rxpapY qzI , zIXpapY q, aICzpapY qs
˘

¨ p
`

xICzpapY q | xpapY qzI , dopXI “ zIq
˘

¨ p
`

xpapY qzI | dopXI “ zIq
˘

dxICzpapY q dxpapY qzI

where covariate-subset aICzpapY q can take arbitrary values since f˚ is constant along covariates R papY q

“

ż

f˚
`

rxpapY qzI , zIXpapY q, aICzpapY qs
˘

p
`

xpapY qzI | dopXI “ zIq
˘

dxpapY qzI

“

ż

f˚
`

rxpapY qzI , zIXpapY q, aICzpapY qs
˘

p
`

xpapY qzI
˘

dxpapY qzI

since the marginal distribution over XpapY qzI equals the do-distribution by assumption (A7)

“

ż ż

f˚
`

rxpapY qzI , zIXpapY q, xICzpapY qs
˘

p
`

xICzpapY q | xpapY qzI
˘

p
`

xpapY qzI
˘

dxICzpapY q dxpapY qzI

“EX
”

f˚pTI�zpxqq
ı

Proof of Theorem 4

Recall we defined:

I˚ :“ argmin
!

|I 1| s.t. D TI1�z P argmax
TI�z :|I|ďk

EX
“

f˚pTI�zpxqq ´ f
˚pxq

‰

)

(14)

as the intervention set corresponding to the optimal sparse uniform transformation (taken to be the
set of minimal cardinality in cases with multiple maxima).

Proof. Since EX rf˚pTI�zpxqqs does not change when zj :“ rTI�zpxqsj is altered for any j R
papY q, including variables outside of the parent set in I does not improve this quantity. Thus, either
papY q Ď I˚, or I˚ Ă papY q. The first case immediately implies (A7). When I˚ Ă papY q: our
assumption that no variable in papY q is a descendant of other parents implies the other parents must
belong the complement of descpI˚q, since this is a subset of desc

`

papY q
˘

.
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