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Abstract

Bayesian optimization (BO) is a sample-efficient method for improving the per-
formance of machine learning algorithms and laboratory experiments. We exploit
the local property in BO to develop a new acquisition function, the expected local
improvement (ELI) as an alternative to Expected Improvement (EI), aiming to
address two underlying issues. First, we reduce the flatland issue in high dimension
and second we allow greater explorative choices for batch BO unlike the existing
strategies. We derive the convergence analysis using simple regret bound. We
further demonstrate that the proposed strategy gains substantial performance im-
provement over the state-of-the-art baselines using the benchmark functions and
real experiments on sequential and batch BO.

1 Introduction

Bayesian optimization (BO) offers an elegant alternative to optimize expensive black box functions
by selecting the next experimental setting sequentially. The field is receiving increasing interest
motivated by its diverse applicability [16, 15, 19]. BO uses a Gaussian Process [13] to express a
“belief” over all possible objective functions. As data is observed, the posterior is updated and is
then used to determine the next experimental setting to evaluate. The selection process for the next
point is guided by a surrogate function - also called the acquisition function - which is built from the
posterior distribution. The advantage is that the acquisition function can be easily evaluated over the
search space as opposed to the original expensive objective function. Alternative to the sequential BO
which recommends one setting per iteration, the batch BO approaches [4, 3, 12] also gain increasing
attention that recommend multiple settings per iteration in situations where parallel experimentation
is possible.

The crucial step of finding the global maximum of the acquisition functions, particularly when
estimated through few observations, remains challenging. This is because the acquisition function
generally has a few sharp peaks marooned in mostly flat regions, especially in high dimension
functions. Such flatlands problem brings challenges to most optimizers [10, 7]. The failure of this
step can seriously compromise BO.

This paper explores a new way to address the above problem and guide the choice of the next
experimental setting. For robust estimation, any strategy to create local “bumps” in the flatlands of
the search space will be useful as there is at least some information at the “bumps” that deserve to be
evaluated, in contrast to no information in flatlands. One approach to creating “bumps” is to construct
the surrogate function using local information. That is, instead of finding the best point globally, we
find a point which is the best around its neighbors. This strategy creates local “bumps” at different
locations in the acquisition function because there is a higher chance to find a point that is better in a
local neighborhood than across the whole domain considered. By looking at the promising candidates
locally, we encourage exploration at more locations. This intuition fits in a broader perspective of
"think globally, act locally" [8, 5], a widely used strategy in planning, environment, mathematics and
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Figure 1: The acquisition functions of EI and ELI(s) on branin function. The dark regions indicate
the peaks. The flatland effect can be seen in the case of EI (Left) with only one peak where most of
the regions are flat with zero value. Although the flatland issue is not the case for 2D, it is serious in
high dimensions. Decreasing the number of nearest neighbor k will result in more locality and more
peaks that ELI(k = 2) gets 8 peaks and ELI(k = 1) gets 10 peaks at different locations. We may not
find a point that satisfies global improvement (as in EI), but we can always find points that improve
locally. This local property makes ELI greatly beneficial for batch BO which finds multiple settings
at each iteration to evaluate in parallel.

business. A further point is that our method is particularly beneficial for batch BO that recommends
multiple settings per iteration corresponding to B peaks of the acquisition function. That is because
having many local “bumps” is likely to offer sufficiently many locally best candidates for parallel
evaluations in batch BO. In contrast, existing acquisition functions may fall short of offering B peaks.

Our paper is the first to investigate the idea of think globally, act locally into the Bayesian optimization
framework. We materialize this by presenting the expected local improvement (ELI). In contrast to
the expected improvement (EI) [11] that finds improvements over the global best found value so far,
ELI finds the points that get the highest local improvement over its neighbors. We devise algorithms
for both the batch and sequential settings based on this new acquisition function. We derive an upper
bound on the simple regret to ensure the convergence property of the proposed strategy. Finally, we
conduct an extensive set of experiments in both sequential and batch Bayesian optimization settings
to highlight the advantages of the local strategy.

2 Limitation of the existing acquisition functions

Most of the existing acquisition functions [9, 11, 17, 6, 18] look the optimization at the global
perspective. For example, POI and EI improve over the current global best value ybest. Similarly, the
PES finds the location that greatly reduces the (predictive) entropy of the function globally. GP-UCB
is also balancing the predictive mean and variance globally.

We focus on the expected improvement (EI) [11] which has been widely used as the default choice
in popular BO packages, such as Spearmint [16]. There has been a concern about flatland effects
in optimizing the acquisition functions which tend to produce a few peaks in mostly flat regions.
This effect may result in inaccurate and unstable estimation. In addition, since the function is often
multi-modal that we may not find a suitable point that satisfies global improvement. This issue is
specifically critical for the batch BO setting where we are seeking a batch of B promising points
at each iteration for parallel evaluations. These points will be often selected from the peaks of the
acquisition function [4, 2]. However, the global perspective used in the existing acquisition functions
can not find enoughB points to satisfy the criteria globally (cf. Fig. 1). As such, the greedy sequential
peak suppression for batch BO will recommend either redundant points around the local optimum or
dummy points if the real peaks in the acquisition function is less than the required batch size of B
that we are looking for. This may waste time and resources to evaluate at these unnecessary points
that violates the fundamental of Bayesian optimization to keep the number of evaluations as low as
possible.
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3 Think globally, act locally

To materialize the strategy of think globally, act locally, we present the expected local improvement
(ELI), an alternative acquisition function to the well-known expected improvement (EI) [11]. Next,
we present an upper bound on the simple regret to provide a guarantee on the convergence property.
Finally, we present the batch BO setting using ELI as the underlying acquisition function.

3.1 Expected Local Improvement (ELI)

We present the expected local improvement (ELI) strategy to find a point that has the highest
improvement over its local neighbors. Although the existing view of expected improvement (EI)
[11] considers improvement globally, we suggest optimization should be treated locally to avoid the
saddle point effects and to identify the promising candidates at multiple locations for batch Bayesian
optimization. Let Dt =

{
xi ∈ RD, yi ∈ R

}t
i=1

be the observation set including the feature xi and
the outcome yi = f (xi) + εi where f(.) is the black-box function. Let us denote the neighboring
observations to x defined by a radius v as [x]

∆
= {xi ∈ Dt | ||xi − x|| ≤ v}, we define the local

improvement function IELI
t (x) = max {0, f(x)− f+ ([x])} where f+ ([x])

∆
= maxxi∈[x] f (xi).

Motivated by the EI, the expected local improvement (ELI) is then defined as αELI
t (x) = E

[
IELI
t (x)

]
.

Explicitly, let denote z = µt−1(x)−f+([x])
σt−1(x) , we obtain the acquisition function as follows (refers the

supplement for the derivation)

αELI
t (x) = σt−1 (x)φ (z) +

[
µt−1 (x)− f+ ([x])

]
Φ (z) (1)

where φ and Φ are the standard normal pdf and cdf.

Although our formulation is a slight modification of that introduced by [11], the idea of making use
of the local strategy for global optimization is novel - to the best of our knowledge.

Bound on simple regret for ELI

Our theoretical analysis uses the simple regret to bound the convergence, instead of the cumulative
regret commonly used in literature, due to the explorative property of the proposed acquisition
function that tends to have high cumulative regret. We assume that the noise process εt is sub-
Gaussian, and the function f is smooth according to the reproducing kernel Hilbert space (RKHS)
associated with the GP kernel. We follow [17] to define the maximum information gain γt. We refer
the interested reader to the supplement for the theoretical derivation.
Theorem 1. Given the maximum information gain γt, a Lipschitz constant L, assuming βt =

2||f ||2k + 300γt ln3
(
t
δ

)
and a constant Q =

τ(
√
βt)

τ(−
√
βt)

, with probability at least 1 − δ, the simple

regret obeys the following rate st ≤ Q× τ
(√

βt + 1
L×t2

)
.

We obtain the smaller simple regret st with increasing t. The radius vt plays a critical role in defining
the neighborhood. The small vt can make the cell empty (no data point lies within the neighborhood
defined by vt). On the contrary, the large vt can diminish the idea of locality. In practice, we observe
that some regions may have no observation, i.e., [x] = ∅. Therefore, instead of defining a fixed radius
vt, we utilize the kNN algorithm to find k ∈ [1, N ] closest neighbors [x] from Dt, then we define
them as the k neighbors to x. This heuristic way ensures every location will have k observations as the
neighbors and we found that it works well in practice. By fixing k, the radius vt is non-increasing and
tends to decrease at every iteration since we add more data points to Dt, thus enable the convergence
of the simple regret.

3.2 ELI for Batch Bayesian Optimization

Next, we consider batch BO setting using the proposed ELI where parallel evaluations are available.
Formally, we identify a batch of B points at each iteration Xt = [xt,1, ...,xt,B ] = argmax

x∈X

αELI
t (x).

We aim to highlight the usefulness of ELI that can offer multiple local peaks at different locations,
beneficial for batch BO. Due to the simplicity and robustness, we select to use the greedy peak
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Approaches POI EST UCB PES EI ELI
Sincos 1D -8.93±2 -8.3±2 -7.87±2 -7.59±2 -8.41±1.9 -8.89±2
Branin 2D 1.322±1 1.1±.6 2.98±2.3 3.17±2 1.42±.9 0.92±.6

Hartman 3D -3.60±.3 -3.5±.4 -3.62±.3 -3.33±.3 -3.62±3 -3.71±.2
Ackley 5D 19.37±1 19±1 15.3±3.8 11.11±2 11.30±4 12.02±5
Alpine2 5D -40.1±15 -13±9 -23.48±7 -62±28 -30.75±18 -43.8±25
Hartman 6D -2.84±.3 -2.5±.3 -2.61±.2 -2.85±.1 -2.91±.1 -2.91±.1
Alpine2 10D -1.8k±77 -139±74 -572±431 -858±1k -447±410 -3486±1k
gSobol 10D 12k±5k 9k±8k 550±387 3k±562 297±234 154±122

Table 1: Best-found-value comparison on the benchmark functions.

Approaches BatchPOI BatchUCB BatchEI Batch ELI(k=1) BatchELI(k=3)
Ackley 5D 12.95±2.9 13.58±1.5 8.50±2.29 6.558±1.6 7.001±1.5
Alpine2 5D -74.99±27 -38.13±14 -39.4±17 -70.33±23 -77.7±32
Hartman 6D -3.02±0.02 -2.74±0.09 -2.92±0.07 -3.02±.04 -3.02±0.03
Alpine2 10D -4625±1k -2722±1k -2432±1k -4907±933 -5792±1k
gSobol 10D 2509±2351 169.7±120 182±127 188.3±139 286±252

Table 2: Best-found-value comparison in batch Bayesian optimization setting.

suppression approach by sequentially visiting all the maxima of the acquisition function [3, 2, 4].
Our proposed ELI can also be applied to other existing batch BO methods (e.g., [14, 12]).

4 Experiments

Experimental Setting We use squared exponential kernels k(x, x′) = exp
(
−l × ||x− x′||2

)
where l is set to the dimension size. The performance of the algorithms is compared for a fixed
number of iterations T = 10×D and the initialization point n0 = 3. The number of nearest neighbor
in our approach is set default as k = 3. The UCB parameter is set as βt = 2 as used in [4]. We
optimize the acquisition function using DIRECT. We use the Spearmint toolbox for PES [6].

We demonstrate that our acquisition functions can reach closer to optimal values (minimum) in both
sequential and batch settings using chosen benchmark functions. Further experiments in real-world
experimental designs are available in the supplement.

4.1 Sequential Bayesian optimization

We report the best-found-value (BFV) in Table 1. The BFV at iteration t, defined as maxxi∈Dt f (xi),
can be seen as the reverse version of the simple regret st = f (x∗)−maxxi∈Dt

f (xi). ELI is more
robust in identifying the best settings (especially for high dimension functions) at each iteration
because we can reduce flat region issues [1] happened in the existing acquisition functions. TS and
POI have higher tendency to exploit aggressively on high dimension functions [15] and thus generally
perform poorer than the others.

4.2 Batch Bayesian Optimization

We further demonstrate the efficiency of the local principle for batch BO. In particular, we employ
the greedy approach of peak suppression [4, 3] for identifying the batch B = 3 of points sequentially.
We compare the performance of the batch BO using the best-found-value on the benchmark functions
in Table. 2. We show that our ELI is robust in outperforming the baselines of POI, GP-UCB and EI
in batch BO w.r.t. different choices of k = 1 and 3. The existing acquisition functions, using global
strategy, can not find enough B regions that satisfy the improvement globally. As a result, batch BO
may start selecting redundant points after all of the real peaks are exhausted. In contrast, ELI can
produce more peaks and thus is suitable for batch Bayesian optimization. In some situations, where
batch BO seeks a large number of peaks B for evaluating parallelly, we can reduce the neighborhood
parameter, e.g., k = 1 to encourage more number of peaks (see Fig. 1) while the existing acquisition
functions are unable to do so.
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