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Abstract

Predictive Entropy Search (PES) is popular and successful Bayesian optimization
(BO) strategy. It finds a point to maximize the information gained about the
optima of an unknown function. However, PES is computationally expensive and
thus is not scalable to large-scale experiment when the number of observations
and dimensions are large. We propose a new scheme - the Predictive Variance
Reduction Search (PVRS) - to find the best “informative” point which reduces the
predictive variance of the Gaussian process model at the optimum locations. We
draw a connection between our PVRS to the existing PES. Our novel modification
will be beneficial in three ways. First, PVRS directly reduces the uncertainty at
the optimum representative points, like the PES. Second, PVRS can be computed
cheaply in closed-form, unlike the approximations made in PES. Third, the PVRS
is simple and easy to implement. As a result, the proposed PVRS gains huge speed
up for scalable BO whilst showing comparable optimization efficiency.

1 Introduction

Bayesian optimization (BO) offers an elegant approach to optimize expensive black box functions by
selecting the next experimental setting sequentially. BO approaches are receiving increasingly interest
motivated by their diverse applicabilities [17, 16, 1, 12, 14, 6, 10]. Our goal is to find the global
maximizer x∗ = argmaxx∈X f (x) over the bounded domain X ⊂ Rd. At iteration t, we select a
point xt and observe a possibly noisy function evaluation yt = f(xt) + εt, where εt ∼ N

(
0, σ2

ε

)
are i.i.d. Gaussian variables.

Since the form of f is unknown, we use Gaussian processes [15] to express a “belief” over the latent
function. As data is observed, the posterior is updated. The selection process for the next point is
guided by a surrogate function - also called the acquisition function - which is built from the posterior
distribution of the GP. The advantage is that the acquisition function can be easily evaluated over the
search space as opposed to the original expensive objective function.

There are existing different types of acquisition functions including EI [9, 5, 11], GP-UCB [18].
They balance the exploitation and exploration property by directly using the predictive mean and
predictive variance of the GP model. Alternatively, entropy search (ES) [2] and predictive entropy
search (PES) [4] aim to “know” more about the global optimum locations by evaluating the queried
point. Although the information-theoretic approaches of ES and PES are successful recently in
offering competitive performances, their computation is expensive and hindering their scalability.
This scalability is important when we can collect data in large-scale (both in number of observations
and the dimensions) or when the function evaluation is not so expensive. Scaling the PES is still an
open research direction.

In this paper, we propose the Predictive Variance Reduction Search, an efficient view to the Predictive
Entropy Search. We present a novel view for gaining the information about the global optimum
locations through the Gaussian process predictive variance (i.e., the smaller the predictive variance
at x∗ is, the more we learn about x∗). This view offers for the closed-form computation of the
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predictive variance, instead of requiring a lot of computation for approximations in PES. As a result
of closed-form and exact solution, our PVRS gains an order of magnitude faster and favourable
performances against the PES.

2 Predictive Entropy Search

Motivated by the information-theoretic method [7], Entropy Search (ES) [2] is proposed to learn the
information at the locations x∗ by selecting the point that is expected to cause the largest reduction
in entropy of the distribution p (x∗ | Dt) [19]. ES measures the expected information gain from
querying an arbitrary point x and selects the point that offers the most information about the unknown
x∗. Let x∗ be the maximum point, Entropy Search uses the information gain defined as follows:

αES (x) = I({x, y},x∗ | Dt) = H [p(x∗ | Dt)]− E
p(y|Dt,x)

[H (p(x∗ | Dt,x, y))]

where H [p (x)] = −
∫
p (x) log p (x) dx indicates the differential entropy and the expectation is over

the distribution of the random variable y ∼ N
(
µn(x), σ

2
n(x) + σ2

ε

)
. This function is not tractable

for continuous search spaces X so approximations must be made. Typically, the approximation is
done using discretization [19, 2]. This Entropy Search [2] is unfortunately O

(
M4
)

where M is the
number of discrete so-called representer points.

To overcome the problem of discretization above, the PES [4] modifies the ES by utilizing the
symmetric function of the mutual information I(x, y;x∗) = I(x,x∗; y) to obtain

αPES (x) = I({x,x∗}, y | Dt) = H [p(y | Dt,x∗)]− E
p(x∗|Dt)

[H (p(y | Dt,x,x∗))]

where p(y | .) is the posterior predictive distribution given the observed data Dt and the location
of the global maximizer x∗ of f . The Predictive Entropy Search (PES) removes the need for a
discretization. The expectation can be approximated via Monte Carlo with Thompson samples; and
three simplifying assumptions are made to compute H (p(y | Dt,x,x

∗)). These assumptions are
presented as three constraints including (1) ∇f(x∗) = 0, non-diagonal elements

[
∇2f(x∗)

]
= 0,

(2) f (x∗) ≥ f(xi),∀xi ∈ Dt and (3) f(x∗) ≥ f(x). Then, [4] incorporates these constraints into
a probabilistic form. Next, they use Expectation propagation (EP) [8] to approximate each non-
Gaussian factor (from the constraint) with a Gaussian distribution. However, the EP approximation
does not guarantee to converge and often leads to numerical instabilities, as pointed out in [3].
Although the PES has been shown to perform as well as or better than the discretized version without
the unappealing quartic term, the complexity of PES is still high O

(
M [N + d+ d(d− 1)/2]

3
)

for each iteration given that M samples of x∗ are precomputed with an additional complexity of
O(MNV 2) where V is the random feature size.

Our new method, PVRS does not suffer from these pathologies of PES approximation. As a result, no
ad-hoc approximations to the acquisition function and the individual factors are required. In addition,
our PVRS is easier to implement than the ES and PES counterpart since computing the GP predictive
variance is straight-forward [15].

3 Predictive Variance Reduction Search for Scalable Bayesian Optimization

We propose the Predictive Variance Reduction Search (PVRS) for Bayesian optimization. Given a
collection of global optimum locations x∗, PVRS finds the most “informative” point x such that by
querying x we minimize the uncertainty at x∗. For reducing the uncertainty at x∗, we minimize the
GP predictive variance at x∗. By that way, we maximize our knowledge (a proxy to the information
gain) about the global optimum locations.

Like the ES and PES, our PVRS aims to gain more information about the global optimum. For
this information-theoretic purpose, our search is based on the predictive variance reduction at the
global optimum location x∗. Using GP predictive variance, our PVRS is much simpler to compute
than the PES. PVRS can be computed in (exact) closed-form and run faster. The exact computation
will ensure the robustness of the whole Bayesian optimization process and prevent from numerical
instability and possible failure caused by approximations. They are our key advantages against ES
and PES.
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Algorithm 1 Bayesian Optimization using Predictive Variance Reduction Search.
Input: D0 = {xi, yi}n0

i=1, #iter T
1: for t = 1 to T do
2: Estimate the best GP hyper-parameter θt by maximizing GP marginal likelihood from Dt−1.

3: Get a collection of points S = [s1, ...sM ]
i.i.d.∼ p(x∗) from Thompson Sampling under θt.

4: Obtain xt = argminx∈X
∑M
m=1 σt−1(sm | θt,Dt−1 ∪ x).

5: Evaluate the function yt = f (xt) and augment the data Dt = Dt−1 ∪ (xt, yt).
6: end for

Output: xmax, ymax

Since the global optimum location x∗ is unknown, we make use of Thompson sampling (with
Random Fourier features [13]) to draw samples S = [s1, ..., sM ]

i.i.d.∼ p(x∗) which express our belief
about the location of x∗. This Thompson sampling step is cheaper O(MNV 2) and is essential for
all previous information-theoretic approaches [2, 4].

At the iteration t, we have the observations including X = [x1, ...,xt−1] and Y = [y1, ..., yt−1].
Given a collection of global optimum locations S = [s1, ...sM ] where sm ∈ Rd, we find the most
“informative point” xt so that if we evaluate this point, we learn as much as possible the information
of the global optimum locations S without evaluating the function f .

xt = argmin
x∈X

M∑
m=1

σ(sm | X ∪ x) ∝ argmax
x∈X

M∑
m=1

k(sm, X ∪ x)K(X ∪ x, X ∪ x)−1k(sm, X ∪ x)T

The complexity for our PVRS is O(MN2) and the sampling [s1, ...sM ] is O(MNV 2).

Connection to the information-theoretic approaches of PES.

We map our Predictive Variance Reduction Search view to the existing PES by using mutual informa-
tion gain between the selected point and the global optimum location I(x, sm) conditioning on the
existing observations Dt.

αPV RSt (x) = min
x∈X

M∑
m=1

σ (sm | Dt ∪ x) = min
x∈X

1

M

M∑
m=1

H [p (sm | Dt ∪ x)]

= max
x∈X

1

M

M∑
m=1

H [p (sm | Dt)]︸ ︷︷ ︸
const

−H [p (sm | Dt ∪ x)]


= max

x∈X

1

M

M∑
m=1

I(x; sm | Dt) ≈ max
x∈X

E
sm

[I(x; sm | Dt)]

where in the first line we have utilized the property that H(p(x)) = 1
2 log

(
2πeσ2(x)

)
for Gaussian

distribution. Although p(x∗) may not Gaussian, we follow [4] to assume the Gaussian distribution
to show the connection. We discuss the key difference from our information theoretic view to the
existing ES, PES as follows. The mutual information of ES and PES I(x, y; sm | Dt) [4, 2, 20]
include the outcome y associated with the location of selection x. Unlike the PES, our view is
motivated by reducing the predictive GP variance which only depends on the location x, not the
outcome y (see [15]). This predictive variance property is crucial to get rid of many approximation
made by ES and PES for scalability without sacrificing the optimization quality.

4 Experiments

We use squared exponential kernel with its kernel parameters optimized by maximizing the marginal
likelihood. We compare the performance of PES [4] using Spearmint package. We use a fixed number
of iterations T = 20d and the number of initial point n0 = 3d where d is the dimension.
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Figure 1: Best-found-value comparison on benchmark functions.
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Figure 2: Computational time comparison with different dimensions. Both PVRS and PES require
Thompson sampling to draw x∗ samples. PVRS is significantly faster than PES in high dimension.

We demonstrate that our PVRS can reach closer to optimal values (minimum) using chosen benchmark
functions. We report the best-found-value defined as minxi∈Dt f (xi) in Fig. 1. The optimization
accuracy of PVRS is comparable or better than the PES. This is because the exact computation
will ensure the robustness and prevent from numerical instability and possible failure caused by
approximations - as in PES.

Different from our PVRS (as well as ES and PES), the Max-value Entropy Search (MES) [20]
suggests to learn the information about the values y∗. However, we argue that learning the values
y∗ may not bring sufficient information for the optimal locations x∗ (represented by sm) since our
ultimate goal is to find the optimum location x∗.

In addition, our PVRS gains significant speed up against the PES in Fig. 2. Let us consider the
experiment when d = 10 dimensions, drawing M = 100 x∗ samples from Thompson sampling
takes 90 secs (blue bar). Then, PVRS takes 60 sec (red bar) while PES takes about 3000 sec (green
bar) per iteration for optimization due to the complexity of O

(
M [N + d+ d(d− 1)/2]

3
)

[4]. The
computational speed up is the key advantage of our approach due to a closed form solution and does
not require many approximations as used in PES.

We are going to perform the real-world experimental designs and tuning of hyper-parameters for
machine learning algorithm in the extended version of this paper.
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