Distance Exploration for Scalable Batch Bayesian
Optimization

Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, Svetha Venkatesh
Centre of Pattern Recognition and Data Analytics (PRaDA), Deakin University
Email: v.nguyen@deakin.edu.au

Abstract

Bayesian optimization (BO) is posed as a sequential problem where each exper-
iment is completed before selecting a next one. However, it is often desirable
to simultaneously explore using batches of parameters, especially when parallel
processing facilities are available. Existing works have addressed batch BO in
different ways. Still, the existing approaches are not scalable to large batch size
or when the function evaluations are cheap. In this paper, we propose a computa-
tionally efficient batch Bayesian optimization based on a new exploration strategy
using geometric distance. Our relaxation reduces the complexity in computing
batch BO and also provides an alternative way for exploration, selecting a point
far from the already observed locations. We theoretically formulate that our new
strategy is a special case of the standard GP variance. We derive convergence
analysis for the proposed batch BO approach. We present extensive experiments to
show that our distance-based approach outperforms the state-of-the-art methods in
both computational efficiency and performance.

1 Introduction

The optimization of the expensive black-box functions based on noisy observations is a funda-
mental problem in various real-world domains, e.g., material design [2] and machine learning
hyper-parameter optimization [17]]. In recent years, Bayesian optimization (BO) has received consid-
erable attention in tuning hyper-parameters for complex models and algorithms in machine learning,
robotics and experimental designs [3 [16, [13} 15} 14} [12].

The standard Bayesian optimization suggests one evaluation at a time. However, in many situations,
it is desirable to run multiple evaluations in parallel so that we can speed up the process of finding the
optimal setting. Such scenarios appear, for instance, in optimizing computer models where several
cores are available to run in parallel. Another example is in wet-lab experiments, wherein the need
for batch experiments is more pronounced as the cost of testing one experimental design is the same
as testing a batch of them.

Related work. Existing work has addressed batch Bayesian optimization in multiple ways. Con-
stant liar (CL) [[7] iteratively constructs a batch of ¢ points. Another direction [4} 6] in batch BO
exploits a crucial fact about GP: the predictive variance depends only on the feature x, but not the
outcome values y. BUCB algorithm [6] extends the sequential UCB to a batch setting. BUCB selects
a first point in a batch using a standard UCB. Then, it updates the predictive variance using the new
point which in turn alters the acquisition function to select a next point. Slightly different from
BUCB, UCB-PE [4] only select a point from a relevance region which is potentially containing the
higher value. The relevant region is sequentially updated after each iteration. Thus, this computation
makes UCB-PE more expensive than BUCB.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Recently, UCB-PE [4] is shown to be equivalent to the determinantal point process (DPP) [10, 9] that
models the diversity of all elements in a batch via a greedy algorithm. Another batch approach is
local penalization (LP) [8] which iteratively penalizes the current peak in the acquisition function to
find the next peak. LP depends on the estimation of Lipschitz constant to flexibly penalize the peaks.
However, the Lipschitz constant L is unknown in general and not trivial to estimate. Batch BO can
also be developed using simulation matching [[1], information-based policies [15]], infinite GMM [13]
and parallel knowledge gradient [18]].

Contribution. To improve the scalability in batch BO, we propose an alternative view which
utilizes the geometric distance of the observations for exploration rather than the standard predictive
variance. Our intuition is based on the fact that the best location for exploration should not be
close to the existing observations. Based on this view, we present a simple, but effective strategy
for batch Bayesian optimization. Our method reduces the computational complexity required to
(repeatedly) compute the predictive variance in Gaussian process. We show theoretically that our
distance exploration is a special case of using the GP predictive variance and derive the sublinear
convergence analysis for the proposed approach.

2 Distance Exploration for Scalable Batch Bayesian Optimization

We present our intuition for exploration using geometric distance and show that this view is a special
case of the standard GP variance. We present some theoretical properties and convergence analysis.

2.1 Geometric distance for exploration (DE)

Exploration by GP variance vs distance

Intuitively, the highest uncertainty point should 06

not be close to already observed locations. If 05 1 .
a data point stays closer to an observation, 04 1 L o3
the less uncertainty it gets, and vice versa. Xg;| =
Thus, we can employ this distance as the met- ° 02 4 [°2°
ric for exploration. That is, we find the loca- | Lo
tion x; s.t. the distance from x; to its near- 00

est observation x; € D; is maximized, i.e. 00 02 04 06 08 "
2, = arg maxger || — [a]||? where we de- e ot rommtn

note the nearest observation to x as [x] = — d=lx=lF 8 xeargmexde

arg ming, ep, || — x;||*. The example of dis-

tance exploration is illustrated in Fig. [T} Figure 1: Illustration of exploration by GP variance

and the proposed DE. The former selects the blue
2.2 Connection to GP Predictive Variance square points while the latter selects a black circle.
[] denotes the nearest observation to «. DE offers

We derive that using the geometric distance for he alternative exploration to GP variance while DE
exploration is a special case of using the GP' ge(g 1id of cubic operation in GP.

variance so that the predictive variance value

from an arbitrary location € X" - denoted as

o3 () - is only influenced by its nearest observation @; € D;, instead of depending on the entire
Vx; € D;. However, this o (x) is not used by the algorithm.

Lemma 1. Let denote [x] = arg ming, ep, ||€ — x;||, the GP predictive variance at x defined by
the nearest observation [x] is computed as o} (x) = 1 — exp? (—||z — [z]]|*/0}) .
Theorem 2. The distance exploration (DE) selects a data point x4 by maximizing the distance from

& to its nearest observation x; € D,. The DE selection is equivalent to maximizing the predictive
variance in standard GP defined by the nearest observation as

Ty = argmax largmin [l — zcl||2] = argmax o} (x) .

zEX x, €D, zEX

2.3 Convergence Analysis

We present the key theoretical results and refer to the supplement for the proofs.

Algorithm 1 UCB-Distance Exploration (DE) for Scalable Batch Bayesian Optimization.
Input: Dy, T', batch size B

1: for t=1toT do
2: Obtain the first element from UCB z; ; = argmax,cx af B (z),and Dy 1 = Dy Umy 1.

3 for i=2to B do

4 Obtain @, ; = arg max,cx [arg ming ep, ,
5. end for '
6

7

T —CL‘ZH] and Dt,i = Dt,ifl Uxy ;.

Evaluate in parallel y; , = f (24),V0 < Band Dy = Dy_1 U (@, yt,b)le.
: end for

Output: Tmax; Ymax

Lemma 3. We bound the maximum information gain of the Distance Exploration using sublinear
DE
term as vPE < O (Zthl t*%) and limy_, o 2= = 0.

Theorem 4. Let yrp be the maximum information gain of DE, § € (0,1) and define fr =
2log (| X|7w2T?/66), C = 32/ log (1 + o~ 2) then with probability at least 1 -8 the cumulative batch

regret of our UCB-DE obtains the sublinear regret as R? <4/ %CﬂTﬂyTB and limp_, R? /T =0.

Similar to the sublinear regret bound of the previous batch approaches, our proposed UCB-DE
achieves a desirable asymptotic property of an algorithm which is no-regret, i.e. limy_,o, RZ /T = 0
and ensures the algorithm converged better than linear rate (e.g., of the random algorithm). It
should be noted that our regret bound may be worse than the bounds of BUCB, UCB-PE and DPP
by a constant factor because the DE offers a greater level of exploration than SE kernel and thus
yre > Yo ~ O(d(InT)) [9]. However, unlike multi-arm bandits, for Bayesian optimization
the performance achieved at the end of the optimization process, i.e. maxy.,ep, f (), is more
important than the cumulative regrets, occurred throughout the process to get that performance.

2.4 Computational Complexity

Let denote T #iteration, B #batch size, d #dimension, N = T B #observation. Let consider the
number of evaluations in global optimization step be 10¢ (grows exponentially with the dimension).
We consider the Cholesky decomposition for matrix inversion with the cost of O(N?). Both BUCB
and our approach are similar in computing a first point in a batch with the complexity of O(109T N?).
The difference in computation is from selecting B — 1 points in T iterations. In BUCB, once we
insert a new element into a batch, we need to perform Cholesky update for the inverse covariance
matrix. After multiplying with (B — 1) and noting that N = T B, we have O(10¢N?) for BUCB
and O(10%N?) for us. Thus, our approach is one order cheaper than BUCB in selecting B — 1 points
in a batch. Then, our DE offers scalable solution for batch BO with larger batch size B, higher
dimension d and more observation N.

2.5 Connection to Determinantal Point Process and UCB-PE

Next, we relate our strategy to k-DPP which is a distribution over all discrete subsets A € A [10]
with the probability p (A) ~ det (K 4). The goal is to pick a subset A with k elements such that p (A)
is maximized [10]. Thus, all of the elements in set A are diverse due to the property of det (K 4).

One of the intermediate steps in proving Theorem] (see the supplement and also discussed in [9])
that

B B B
1
2 —2
;Tt,b < ;Ut—m (xep) < Tog (1107 logbli[1 (1+o0 %01 (z4)) - (1)
At an iteration t after choosing the first element, let the kernel matrix be K,; = I +

o2 [ke1 (i, pj)); ; over all possible points p;,p; € X. We can see that the product of the last
B — 1 terms in Eq. (T) is exactly B — 1 principal minor of the kernel matrix K ; formed by the

indices corresponding to A = {x,}£_,. Thus, we conclude that our UCB-DE is a special case of
the k-DPP, where k = B — 1, via a greedy algorithm.

Table 1: Best-found-value comparison on benchmark functions with 7' = 10d and B = 5.

| Functions [Hartmann [Ackley | Alpine2 [Hartmann | gSobol |
Dim 3D 5D 5D 6D 10D
CL | UCB | -3.862(.00) | 10.53(1.51) | -46.46(30.8) | -2.747(0.05) | 678.2(304)
LP | UCB | -3.833(.03) | 15.52(2.31) | -63.54(21.6) | -2.987(0.03) | 500.8(347)
BUCB -3.488(.26) | 10.21(0.62) | -45.93(15.1) | -2.847(0.09) | 432.9(476)
UCB-PE (DPP) | -3.691(.13) | 12.90(1.15) | -48.86(7.53) | -2.903(0.06) | 320.8(340)
UCB-DE -3.862(.00) | 11.41(2.17) | -52.84(0.0) | -3.098(0.07) | 228.3(224)

CPU Time Comparison, T=10xD, D=6 BNMC Hyperparameter Tunning D=6

8000
—<4 UCB-PE (DPP) A
-H- CL-UCB 0720 1 R
6000 --A-- BUCB 7
E -@- LP-UCB g o7e
gaooo ¥ UCB-DE Eom V| oo st e CL-UCB
= % UCB (B=1) wo —— UCB-PE(DPP)
2000 T --+-- BUCB
077 g —— LP-UCB
o ¥ ! —s=— UCB-DE
T T T T 0.716 T T T T T T T
5 10 15 20 0 100 200 300 400 500 600 700
Batch Size (B) Time (sec)

Figure 2: Left: Time comparison with different batch size. Right: Comparison on real experiments.

3 Experiments
The proposed UCB-DE outperforms the baselines in CPU time whilst achieving comparable results.

Comparison on benchmark functions. We compare the performances using benchmark objective
functions which the dimensions range from 3 to 10. We set the batch size B = 5 so that all of the
methods have a similar budget. We present the result in Table [T] that all of the methods perform
generally well and competitive. This is because all methods are quite similar in selecting the first
element in a batch. In addition, our proposed UCB-DE performs superior to the baselines for 4 over
5 cases. This is because the selected points by DE is more explorative and far from the observed
location than the choices of using GP variance. However, in situation that requires more exploitation,
such as Ackley function, our UCB-DE fails against the BUCB and CL.

Computation comparison. As our focus is to speed up batch BO by offering a simpler but equiva-
lent solution to the existing techniques. In Fig. 2] we compare the CPU time w.r.t. different batch
sizes B = 5,10, 15,20 on Hartmann 6D function. UCB-PE (DPP) takes the most computation cost
because it repeatedly computes relevant regions and search for the highest variance location in these
regions. BUCB only updates the predictive variance while it keeps the mean function fixed. Hence,
BUCSB is cheaper than CL which requires updating both mean and variance.

Our proposed approach outperforms all baselines in computation. Especially, when a batch size
B increases, our UCB-DE computation seems invariant and surpasses the others in an order of
magnitude. Because increasing a batch size results in more observations, the number of GP updates
(after each element is added into a batch) increases and also each GP update is more costly O (N 3)
due to large observations. In contrast, computing a distance in DE is much cheaper and our UCB-DE
cost is almost similar to the cost of the sequential setting (B = 1).

Hyperparameter tuning. We optimize the hyper-parameters for the BNMC [11] on Scene dataset
using the public code. There are 6 hyper-parameters to tune so that the F1-score is maximized.

We compare the performances under the axis of running time (both optimization and evaluation). The
experiments show that our method achieves generally the best performance (in terms of F1-score
and strength) within the shortest time (see Fig. [2). This is because the proposed DE can prevent the
complexity of GP and thus run much faster. In addition, our approach also offers a greater level of
exploration based on geometric distance.

References

[1] J. Azimi, A. Fern, and X. Z. Fern. Batch Bayesian optimization via simulation matching. In
Advances in Neural Information Processing Systems, pages 109-117, 2010.

[2] P. V. Balachandran, D. Xue, J. Theiler, J. Hogden, and T. Lookman. Adaptive strategies for
materials design using uncertainties. Scientific reports, 6, 2016.

[3] E. Brochu, V. M. Cora, and N. De Freitas. A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning.
arXiv preprint arXiv:1012.2599, 2010.

[4] E. Contal, D. Buffoni, A. Robicquet, and N. Vayatis. Parallel gaussian process optimization with
upper confidence bound and pure exploration. In Machine Learning and Knowledge Discovery
in Databases, pages 225-240. Springer, 2013.

[5] T. Dai Nguyen, S. Gupta, S. Rana, V. Nguyen, S. Venkatesh, K. J. Deane, and P. G. Sanders.
Cascade Bayesian optimization. In Australasian Joint Conference on Artificial Intelligence,
pages 268-280. Springer, 2016.

[6] T. Desautels, A. Krause, and J. W. Burdick. Parallelizing exploration-exploitation tradeoffs in
gaussian process bandit optimization. The Journal of Machine Learning Research, 15(1):3873—
3923, 2014.

[7] D. Ginsbourger, R. Le Riche, and L. Carraro. Kriging is well-suited to parallelize optimization.
In Computational Intelligence in Expensive Optimization Problems, pages 131-162. Springer,
2010.

[8] J. Gonzélez, Z. Dai, P. Hennig, and N. D. Lawrence. Batch Bayesian optimization via local
penalization. In Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics, pages 648-657, 2016.

[9] T. Kathuria, A. Deshpande, and P. Kohli. Batched gaussian process bandit optimization via
determinantal point processes. In Advances in Neural Information Processing Systems, pages
42064214, 2016.

[10] A. Kulesza and B. Taskar. k-dpps: Fixed-size determinantal point processes. In Proceedings of
the 28th International Conference on Machine Learning (ICML), pages 1193-1200, 2011.

[11] V. Nguyen, S. Gupta, S. Rana, C. Li, and S. Venkatesh. A Bayesian nonparametric approach for
multi-label classification. In Proceedings of The 8th Asian Conference on Machine Learning
(ACML), pages 254-269, 2016.

[12] V. Nguyen, S. Gupta, S. Rana, C. Li, and S. Venkatesh. Bayesian optimization in weakly
specified search space. In IEEE 17th International Conference on Data Mining (ICDM), 2017.

[13] V. Nguyen, S. Rana, S. Gupta, C. Li, and S. Venkatesh. Budgeted batch Bayesian optimization.
In IEEE 16th International Conference on Data Mining (ICDM), pages 1107-1112, 2016.

[14] S.Rana, C.Li, S. Gupta, V. Nguyen, and S. Venkatesh. High dimensional Bayesian optimization
with elastic gaussian process. In Proceedings of the 34th International Conference on Machine
Learning (ICML), pages 2883-2891, 2017.

[15] A. Shah and Z. Ghahramani. Parallel predictive entropy search for batch global optimization of
expensive objective functions. In Advances in Neural Information Processing Systems, pages
3312-3320, 2015.

[16] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the human out of
the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):148-175, 2016.

[17] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning
algorithms. In Advances in neural information processing systems, pages 2951-2959, 2012.

[18] J. Wu and P. Frazier. The parallel knowledge gradient method for batch Bayesian optimization.
In Advances In Neural Information Processing Systems, pages 31263134, 2016.

	Introduction
	Distance Exploration for Scalable Batch Bayesian Optimization
	Geometric distance for exploration (DE)
	Connection to GP Predictive Variance
	Convergence Analysis
	Computational Complexity
	Connection to Determinantal Point Process and UCB-PE

	Experiments

