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Abstract

We consider the problem of robust optimization, where it is sought to design a
system such that it sustains a specified measure of performance under uncertainty.
This problem is challenging since modeling a complex system under uncertainty
can be expensive and for most real-world problems robust optimization will not
be computationally viable. In this paper, we propose a Bayesian methodology to
efficiently solve a class of robust optimization problems that arise in engineering
design under uncertainty. The central idea is to use Gaussian process models of loss
functions (or robustness metrics) together with appropriate acquisition functions to
guide the search for a robust optimal solution. Numerical studies on a test problem
are presented to demonstrate the efficacy of the proposed approach.

1 Introduction

Consider a scalar output of an expensive computer simulation f(x1,x2+δ, ξ), wherex1 ∈ X1 ⊂ Rd1

and x2 ∈ X2 ⊂ Rd2 can be precisely controlled (control factors) while δ ∈ Y ⊂ Rd2 and
ξ ∈ Z ⊂ Rdξ are random variables (noise factors) with the specified joint probability density
function p(δ, ξ). Now, suppose that we seek the minima of f subject to the set of inequality
constraints, cj(x1,x2 + δ, ξ) ≤ 0, j = 1, . . . , dc, by varying the control factors. This problem can
be posed as a robust optimization problem where we seek to minimize some measure of loss such
that the optimum is least sensitive to the noise factors δ and ξ. The robust optimization problem that
we consider is of the form

x? = argmin
x∈{x1,x2}

J (x) s.t. Pr[cj ≤ 0] ≥ 1− η, j = 1, . . . , dc, (1)

where J : X1 × X2 → R denotes a loss function (or a robustness metric) [1] and η ∈ [0, 1] is a
user defined parameter that controls the probability of constraint satisfaction. Optimization problems
of this form are encountered in many areas such as the design of circuits, aircraft and automotive
components [2, 3].

The primary focus of the present work is to develop efficient Bayesian optimization (BO) methods
for solving (1). It is well known that Bayesian methods are well suited for locating the minima
of complex optimization problems on a limited computational budget, particularly when gradient
information is not available and the underlying function is corrupted by noise [4–7]. To the best
of our knowledge, BO methods have not been formulated for robust optimization problems of the
form considered here. The key challenge is that we don’t have access to observations of J due to
computational resource limitations, instead we only have the ability to query f and cj , j = 1, . . . , dc.
In this paper, we present a methodology to estimate loss functions that are of interest in optimization
under uncertainty using Gaussian process (GP) models [8] conditioned on observations of f and
cj , j = 1, . . . , dc. Subsequently, we propose acquisition functions that can be used to iteratively
converge to the minima of (1). Finally, we present numerical studies to demonstrate the performance
of the proposed algorithm.
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2 Bayesian Optimization Under Uncertainty

In this section we outline the proposed BO strategy to solve (1). To simplify our notation, we
introduce two new variables: x̃ = {x1,x2 + δ, ξ} defined over the product space X̃ ⊂ Rd1+d2+dξ

and ζ = {δ, ξ} defined over the product space Q = Y × Z . In addition, we will use the notation
x̃i to denote the ith observation of x̃ and x̃1:t to denote t observations. Lastly, we denote the set of
optimization variables (or control factors) {x1,x2} by x ∈ X where X = X1 × X2. Note that Y
and Z are the image spaces of δ and ξ respectively.

In the BO under uncertainty framework, the loss function J is specified such that the noise factors ζ
are integrated out and decisions can be made entirely in the decision space X . One possibility is to
use Bayes risk [9] as the loss function, i.e.

J (x) =
∫
Q
f(x̃)p(ζ)dζ. (2)

Here, the loss function is the first statistical moment of f over the space Q given a setting for the
control factors x. Alternatively, one may define J as the second-order statistical moment given
by

∫
Q f(x̃)

2p(ζ)dζ. This measure of loss simultaneously minimizes Bayes risk and the variance
of f [10]. The proposed framework for BO under uncertainty can accommodate a wide variety of
alternative robustness metrics, such as the aggregate of the mean and the variance [11], the minimax
principle [3] and horsetail matching [12].

Next, we specify a zero mean GP prior over the function f with a covariance function kpr
f : X̃ × X̃ →

R. In other words, we approximate f as a function of x1,x2 and ξ. Note that it is not necessary to
explicitly model the dependence of f on δ since this noise factor can be interpreted to be a perturbation
to x2. Now, suppose that we have gathered the t observations y1:t = f(x̃1:t)+ ε, where ε ∼ N (0, ν)
denotes measurement noise. Subsequently, by conditioning the prior on the t observations we
obtain the posterior distribution f ∼ GP(µpos

f , kpos
f ), where µpos

f (x̃) = k(x̃)T(K + νI)−1y1:t is
the posterior mean and kpos

f (x̃, x̃′) = kpr
f (x̃, x̃

′) − k(x̃)T(K + νI)−1k(x̃′) denotes the posterior
covariance. The elements of the covariance matrixK ∈ Rt×t are given byKpq = kpr

f (x̃
p, x̃q)+νδpq

where δpq denotes the Kronecker delta and k(x̃) = [kpr
f (x̃, x̃

1), . . . , kpr
f (x̃, x̃

t)]T is the vector of
cross covariances. The hyperparameters in the prior covariance function and the noise variance can
be estimated using an empirical or fully Bayesian approach [8].

Consider the case when the loss function J is defined as Bayes risk (see (2)). Since the loss function
is a linear operator applied to f it follows that,

J ∼ GP(µpos
J , kpos

J ), (3)

where
µpos
J (x) =

∫
Q
µpos
f (x̃)p(ζ)dζ = z(x)T(K + νI)−1y1:t, (4)

kpos
J (x,x′) =

∫
Q

∫
Q
kpos
f (x̃, x̃′)p(ζ, ζ′)dζdζ′ = z(x,x′)− z(x)T(K + νI)−1z(x′), (5)

z(x) : X → Rt with its ith component defined as zi(x) =
∫
Q k

pr
f (x̃, x̃

i)p(ζ)dζ, and z : X×X → R
is given by

z(x,x′) =

∫
Q

∫
Q
kpr
f (x̃, x̃

′)p(ζ, ζ′)dζdζ′. (6)

The integrals that appear in (4) - (6) can be evaluated analytically provided that the covariance
function kpr

f (x̃, x̃
′) and the joint distribution p(ζ) are separable with respect to their input arguments.

When this is not feasible, a multivariate sparse quadrature scheme can be used to approximate these
integrals [13].

We note that if J is not a linear operator applied to f then the estimator for the loss function is
no longer a GP, for example, if J (x) =

∫
Q f(x̃)

2p(ζ)dζ. In this specific case, we can apply GP
inferencing to the integrand f2 so that the estimator for J is a GP. For a more general nonlinear loss
function, we can construct a Gaussian approximation of J using a sampling procedure or a sparse
quadrature scheme.
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To guide the search towards the minimizer x? while ensuring a high probability of constraint
satisfaction, we require a strategy to identify the point xt+1 = {xt+1

1 ,xt+1
2 } ∈ X , where we should

next query the deterministic computer model. However, this information alone is not sufficient to
evaluate f and cj , j = 1, . . . , dc, as we must also select a setting for ξt+1 ∈ Z . We then require
the acquisition function αcx : X → R to guide the optimization and αcξ : Z → R to identify an
appropriate setting for ξt+1.

Locating the query point xt+1 is accomplished by maximizing αcx(x). To avoid sampling far away
from the feasible region we select xt+1 such that Pr[cj(xt+1

1 ,xt+1
2 + δ, ξ) ≤ 0], j = 1, . . . , dc is

high before querying the computer model [14]. The proposed acquisition function can be written as

αcx(x) = αx(x)

dc∏
j=1

Pr[cj(x1,x2 + δ, ξ) ≤ 0], (7)

where one example of αx : X → R is the probability of improvement (POI) criterion [15]. This
means αx = Pr[J ≤ J †], where J † denotes a target for the loss function. Another possibility is the
expected improvement (EI) criterion [16], which is defined as E[max(0,J †−J )]. It is also possible
to use the lower confidence bound (LCB) [17] defined as µpos

J (x)− βkpos
J (x,x) with β ∈ R+. The

LCB is well suited to problems where the goal is to minimize regret but may suggest new points that
do not explore beyond a local minima. It is worth noting that it is also possible to use information gain
metrics as candidate acquisition functions for use in the BO under uncertainty framework [18–20]. If
we have GP models for all of the constraints then the product terms appearing in (7) can be efficiently
approximated using the ideas presented in [21, 22].

Finally, we consider the case when ξt+1 is selected such that the predictive capability of the GP models
for the objective and constraint functions are improved. One way to proceed further would be to
assume that xt+1 is fixed and define the acquisition function as αcξ(ξ) = kpos

f ({xt+1, ξ}, {xt+1, ξ}).
By maximizing this acquisition function we select the location in the image space Z where the model
is least accurate. An alternative would be to express αcξ(ξ) as the aggregate of both the variance
of the objective function and all of the constraints. Another option would be to integrate over the
control variables from the GP posterior variance and maximize αcξ(ξ) =

∫
X k

pos
f (x̃, x̃)dx to obtain

the setting for ξt+1. Again, it would be possible to amalgamate some combination of the variance
of each constraint cj , j = 1, . . . , dc and integrate over X . With the new points selected, we query
the objective and constraint functions and then augment the dataset D1:t = {x̃1:t,y1:t, c1:ty } with
the new observations {x̃t+1, yt+1, ct+1

y } to obtain Dt+1, where x̃i contains {xi, ξi} and ciy ∈ Rdc

denotes the ith vector of noise corrupted constraint observations. The key steps of the proposed
methodology are outlined in Algorithm 1.

Algorithm 1: Bayesian Optimization Under Uncertainty
D1:t = {x̃1:t,y1:t, c1:ty } // Initialize training dataset with t samples
while cost ≤ budget do

f ∼ GP(µpos
f , kpos

f )
conditioning←−−−−−−

on D1:t
GP(µpr

f , k
pr
f )

J ∼ GP(µpos
J , kpos

J )

cj ∼ GP(µpos
cj , k

pos
cj )

conditioning←−−−−−−
on D1:t

GP(µpr
cj , k

pr
cj ), j = 1, . . . , dc

xt+1 = argmaxx α
c
x(x) ξt+1 = argmaxξ α

c
ξ(ξ)

D1:t+1 ← D1:t ∪ {x̃t+1, yt+1, ct+1
y }

t← t+ 1

3 Numerical Studies

We present numerical studies involving the minimization of the Branin function [23] un-
der uncertainty. In particular, we rewrite the Branin function as f(x + δ), where x ∈
[−5, 10] × [0, 15] and δ is a vector of uniformly distributed random variables defined over
the interval [−δb, δb]. For this study, we choose Bayes risk as the loss function. Since
J is inexpensive to evaluate precisely using a quadrature scheme for this particular prob-
lem, we illustrate the contour plots of Bayes risk while varying δb ∈ R2 as shown in
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Figure 1. For the case when δb is a vector of zeros as shown in Figure 1a we recover the orig-

(a) δb = [0, 0]T (b) δb = [1, 1]T (c) δb = [2, 2]T (d) δb = [3, 3]T

Figure 1: Bayes risk for the Branin function where red stars indicate global minima.

inal Branin function with three global minima. In the scenario where δb > 0 there exists a single
global minima as illustrated in Figures 1b, 1c and 1d.

Now, suppose that we seek to minimize J using the methodology presented in Section 2. If the prior
distribution p(f) is defined by a zero mean function and the squared exponential covariance function
[8] then we can derive closed form expressions for µpos

J and kpos
J . We study the performance of POI, EI

and UCB using the gap metric G = (J (xı)−J (x†))/(J (xı)−J (x?)), where J (xı) denotes the
Bayes risk evaluated at the first query point andJ (x†) is the minimum observed value inJ (x1:t) [24].
A comparison of the results obtained for δb = [1, 1]T are shown in Figure 2. We initialize the dataset
D1:10 with 10 random query points and carry out 25 independent runs. Additionally, in Figure 2d,

(a) αcx: POI (b) αcx: EI (c) αcx: LCB (d) αcx: random

Figure 2: Convergence of the gap metric G for various acquisition functions.

we use a random number generator as the acquisition function for comparison. For this setting of
p(δ), the POI acquisition function performs consistently well while the EI criterion explores more in
the earlier iterations, thus requiring additional evaluations of f to reach the global minima. When
compared with the randomized acquisition function, all methods have lower uncertainty in the later
iterations.

4 Conclusions and Future Work

We propose an efficient framework for solving constrained optimization problems where the objective
or the constraint functions are sensitive to uncertainty. We first specify a loss function such that
decisions can be made entirely in the space of the control factors. However, if evaluating the
underlying objective and constraint functions are expensive, then solving the robust optimization
problem can be computationally demanding. It was shown that by specifying a GP prior over the
objective function, estimating the loss function becomes tractable and in some cases the mean and
covariance functions can be expressed analytically. Similarly, using GP models for the constraints,
the probability of constraint satisfaction can be efficiently approximated. Finally, we showed that
update points used to query the expensive objective and constraint functions can be selected by
maximizing specified acquisition functions. The focus of ongoing work is on the formulation of
alternative acquisition functions to identify multiple query points in parallel as well as the use of
gradient observations to accelerate convergence.
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