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Abstract

Bayesian optimization (BO) is a global optimization strategy designed to find the
minimum of an expensive black-box function, by using a Gaussian process (GP)
as a surrogate model for the objective. Although currently available acquisition
functions address this goal with different degree of success, an over-exploration
effect of the contour of the search space is typically observed. We propose a method
to incorporate this knowledge into the searching process by adding virtual derivative
observations in the GP at the borders of the search space. The method is applicable
with any acquisition function, it is easy to use and consistently reduces the number
of evaluations required to optimize the objective irrespective of the acquisition used.
We illustrate the benefits of our approach in an extensive experimental comparison.

1 Introduction

Global optimization is a common problem in a very broad range of applications. Formally, it is
defined as finding xmin ∈ X ⊂ Rd such that xmin = argminx∈X f(x), where X is generally
considered to be a bounded set. In this work, we focus on cases in which f is a black-box function
whose explicit form is unknown and that it is expensive to evaluate. This implies that we need to find
the xmin with a finite, typically, small number of evaluations.

Bayesian optimization of black-box functions using Gaussian Processes (GPs ) as surrogate priors has
become popular in recent years (see, e.g., review by Shahriari et al., 2016). A common problem that
has not been systematically studied in the BO literature is the tendency of most acquisition strategies
to over-explore the boundary of the function domain X . This issue is not relevant if the global
minimum may lie on the border of the search space but in most cases this is not the case. This effect
has also been observed in the active learning literature (Krause and Guestrin, 2007). The unwanted
boundary over-exploration effect of the regular BO is illustrated in Figure 1. In this paper we propose
a new approach to correct the boundary over-exploration effect of most acquisitions.

2 Background and problem set-up

2.1 Standard GP surrogate for modeling of f

At iteration n + 1, we assume that we have evaluated the objective function n times providing us
the data D = {y(i),x(i)}ni=1 where y(i) is, the possibly noisy, function evaluation at input location
x(i). A GP prior is directly specified on the latent function with prior assumptions encoded in
the covariance function k(x(1),x(2)), which specifies the covariance of two latent function values
f(x(1)) and f(x(2)). A zero mean Gaussian process prior p(f) = N(f |0,K), is chosen, where K is
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Figure 1: Sequence of 15 evaluations when optimizing a combination of Gaussians (darker colors
represent lower function values) with standard BO on left and the proposal of this work on right. The
five red circles are the points used to initialise the GP. The 15 red crosses are the acquisitions. With
the new proposal, less evaluations are spent in the boundary, and more points are collected around the
global optimum.

a covariance matrix between n latent values f at input used for training, X =
(
x(1), . . . ,x(n)

)
, s.t.

Kij = k(x(i),x(j)).

In regression, n noisy observations y and o latent function values f∗ at the test inputs X∗ are assumed
to have Gaussian relationship. With the noise variance σ2, the covariance between the latent values at
the training and test inputs K∗ and the covariance matrix of the latent values at the test inputs K∗∗,
the joint distribution of the observations and latent values at the test inputs is[

y
f∗

]
∼ N

(
0,

[
K + σ2I KT

∗
K∗ K∗∗

])
. (1)

Using the Gaussian conditioning rule, the predictive distribution becomes f∗|y ∼ N(µ∗,Σ∗) with
µ∗ = K∗(K + σ2I)−1y, and Σ∗ = K∗∗ −K∗(K + σ2I)−1KT

∗.

2.2 Acquisition policies

Among others, some very well established acquisition functions are available. The expected Im-
provement (EI) maximizes the expected gain over the current best (Jones et al., 1998). The lower
confidence bound (LCB) minimizes the regret over the optimization area (Srinivas et al., 2010) E.
Brochu, V. M. Cora , and N. de Freitas (2010). The probability of improvement (MPI), selects the
next point where probability of improving over the current best is the highest (Kushner, 1964).

2.3 Incorporating partial derivative observations in the loop

Since the differentiation is a linear operator, the partial derivative of a Gaussian process remains
a Gaussian process (Solak et al., 2003; Rasmussen and Williams, 2006). Using this property,
covariance matrices in equations of Section 2.1 can be extended to include partial derivatives either
as observations or as values to be predicted. Following Riihimäki and Vehtari (2010), the probability
of observing partial derivative of direction d, md, is modelled using probit likelihood with a control
parameter ν (see details in Riihimäki and Vehtari, 2010) Assuming conditional independence given
the latent derivative values, the likelihood of all the derivative values becomes a product of probit
likelihoods. Now the joint posterior for the latent values and the latent value derivatives can be derived
from the Bayes’ rule. However, since there are probit components, the full posterior is analytically
intractable and some approximation method must be used. Following Riihimäki and Vehtari (2010),
we use expectation propagation (EP) for fast and accurate approximative inference.

3 Bayesian optimization with virtual derivative sign observations

Just like in the regular BO with GP prior presented in the Section 2, the objective function is given a
GP prior which is updated according to the objective function evaluations so far. The next evaluation
point is the acquisition function maximum, but if it is closer than threshold εb to the border of the
search space, the point is projected to the border and a virtual derivative observation is placed to that
point instead. After having added this virtual observation, the GP prior is updated and new proposal
for the next acquisition is computed. Algorithm 1 contains pseudo code for the proposed method.

For more robustness, the following modifications can be used. Before placing a virtual derivative
observation on the border, it can be checked whether or not the existing data supports the virtual
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Algorithm 1 Pseudo code of the new BO method. The inputs are the acquisition a, the stopping crite-
rion and the GP model. Note that the algorithm reduces to standard BO when lines 4-6 are removed.
1: while stopping criterion is False do
2: Fit GP to the available dataset X,y.
3: Optimise acquisition function, a, to find select new location x to evaluate.
4: if x is close to the edge then
5: Augment X with a virtual derivative sign observation at x̃.
6: else
7: Augment X with x and evaluate g at x.
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Figure 2: Each of the plot grids row illustrates results for different acquisition functions and each
column illustrates functions of different dimension for case study 2.

gradient sign observation to be added to the model. If the energy of the assumed derivative sign is
smaller than of opposite direction, it is reasonable to add the virtual observation. If there are minima
on border, acquisitions might be proposed to locations where already exists virtual observations. If
this happens, it is reasonable to remove the virtual observation before adding the new acquisition.

4 Experiments

The proposed Bayesian optimization algorithm was implemented in GPy toolbox 1. In all four case
studies to be covered later, we use zero mean GP prior for regular observations and probit likelihood
with scaling parameter ν = 10−6 for the virtual derivative observations. In addition to this, we use the
squared exponential covariance function. Three BO algorithms are used in the case studies. Standard
BO algorithm (referred as vanilla BO, VBO), BO algorithm with virtual derivative sign observations
(referred as derivative BO, DBO) and adaptive version of DBO (referred as ADBO). For the last two of
these, virtual derivative sign observations are added if the next proposed point is within 1% of the
length of the edge of the search space to any border. For ADBO, old virtual derivative observations
are removed before adding regular observation if the euclidean distance between the points is less
than 1% of the length of the edge of the search space.

4.1 Case study 1: A simple example function

The algorithm is used to illustrate the unwanted boundary over-exploration effect of the regular BO.
To show this, simple function consisting of two Gaussian components is optimized with VBO and
DBO using LCB as an acquisition function. The function and 15 first acquisitions are visualized in
Figure 1, in the introduction.

4.2 Case Study 2: Random multivariate normal distribution functions

The algorithms are used to find the minimum of different d-dimensional negative multivariate normal
distribution (MND) functions, for which the means are not located at the borders of the search
space. To simulate real life observations, random noise ε ∼ N(0, s) is added to the observations
y(x) = g(x) + ε, for some fixed s.

We drew 100 such functions per dimension in up to 4 dimensions, for three different noises s =
{0, 0.05, 0.1}. For all these 400 functions, we ran the three BO algorithms for all three acquisition
functions until the algorithms converged to the minimum. 25, 50, and 75 percentiles of found
minimum values of these functions as a function of iterations are illustrated in Figure 2 for with

1Toolbox available at: https://sheffieldml.github.io/GPy/
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Figure 3: Same as in Figure 2, but with functions from Sigopt-library.
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Figure 4: Same as in Figure 2, but with MND-functions that have local minimum on the edge of the
search space.

s = 0.1. Results for other noise levels can be found from supplementary material. The results show
that in all dimensions for all acquisition functions, performances of DBO and ADBO are better than or
equal to the performance of VBO. Particularly with acquisition functions EI and LCB, DBO converges
to the global minimum significantly faster than VBO, especially if the function is corrupted by noise.
The variance of the optimization performance between different optimization runs is notably smaller
for DBO and ADBO than for VBO.

4.3 Case study 3: Sigopt function library

Dewancker et al. (2016) introduced a benchmark function library called Sigopt for evaluating BO
algorithms. When restricting the functions to at maximum 4 dimension and taking into account only
unimodal, non-discrete functions with no global border minima or large plateaus, the library outputs
48 functions. The results are illustrated in Figure 3 for s = 0.1. Results for other noise levels can be
found from supplementary material. The results are similar as for MND functions. DBO and ADBO
still perform better than VBO, especially with LCB and EI. There is not as much difference between
ADBO and VBO as before. Similarly as before, the variance of the optimization performance between
different optimization runs is notably smaller for DBO and ADBO than for VBO.

4.4 Case study 4: Simple Gaussian functions with minima on border

The algorithms are used to find minimum of similar MND functions as in Section 4.2, with the
difference that the global minima of each function is on the border of the search space. The results
are illustrated in Figure 4 for s = 0.1. Results for other noise levels can be found from supplementary
material. As expected, the results show that DBO does not perform as well as VBO and ADBO. The
performances of ADBO and VBO are very similar for all noise levels and dimensions for LCB and MPI,
for EI it performs similar as DBO.

5 Conclusions

We have presented here a Bayesian optimization algorithm which utilizes qualitative prior information
concerning the objective function on the borders. Typical uses of Bayesian optimization concern
expensive functions and in many applications qualitative knowledge of the generic properties of
the function are known prior to optimization. The proposed BO method has proved to significantly
improve the optimization speed and the found minimum when comparing the average performance to
the performance of the standard BO algorithm without virtual derivative sign observations.
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