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Abstract

In computational chemistry, systems of atoms are often characterized by a potential
energy surface defined as a function of the atom coordinates. When determining the
mechanism and rate of transitions between different configurations, it is useful to
find a minimum energy path connecting the energy minimum points corresponding
to the initial and final state. Such paths are frequently calculated using the nudged
elastic band method, where an initial path is iteratively shifted to the nearest
minimum energy path. The computational effort can be large, since the method
typically requires hundreds of expensive evaluations of energy and its gradient.
Here, we show how the number of such evaluations can be reduced by an order of
magnitude using a Gaussian process regression approach where an approximate
energy surface is generated and refined in each iteration.

1 Introduction

In computational chemistry, systems of atoms are often characterized by a potential energy surface
(PES), a function of the atom coordinates, where the local minimum points correspond to the stable
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states of the system. When determining the mechanism and rate of transitions between two states,
it is useful to find a minimum energy path (MEP) connecting the corresponding energy minimum
points. The most interesting point on the MEP is its highest energy point, which is a first-order saddle
point on the PES. Mathematically, a MEP can be defined with a requirement that any point on the
path is at an energy minimum in all directions perpendicular to the path. With this definition, there
can potentially be multiple MEPs connecting the two states.

The nudged elastic band (NEB) method is a commonly used iterative approach to find MEPs [1]. In
the NEB method, the path between two local minimum points on the energy surface is represented by
a discrete set of points, referred to as ‘images’. Starting from an initial guess, the idea is to move the
images downwards on the energy surface but keep them evenly spaced. The images are moved along
an NEB force vector, which is a resultant of two components: negative energy gradient projected on
the direction perpendicular to the path and a spring force (parallel to the path), which tends to keep
the images evenly spaced. The path has converged to an MEP when the magnitude of the NEB force
vector is zero (to some tolerance) for all images.

Each NEB calculation typically involves on the order of a hundred evaluations of the energy and
its gradient for each one of the images, and the path is typically represented by five to ten images.
The evaluations were initially performed mostly using analytical potential energy functions, but
nowadays electronic structure calculations are also used extensively in NEB applications. Since a
typical electronic structure calculation takes on the order of tens of CPU minutes or more, the NEB
calculations can become computationally demanding. In addition, the calculation may need to be
repeated if there are several possible final states for the transition. Thus, it would be valuable to find
ways to accelerate NEB calculations. To get the most out of the computationally intensive electronic
structure calculations, the information obtained from them should be exploited better to decrease the
number of NEB iterations instead of forgetting it after one iteration.

2 Gaussian process regression approach

The use of machine learning to accelerate MEP and saddle point calculations has been introduced
by Peterson [2], who applied neural networks to construct an approximate energy surface for which
NEB calculations were carried out. After relaxation of the path on the approximate energy surface,
the accurate energy and gradient were evaluated at the images of the relaxed path to see whether
or not the path had converged on an MEP on the true energy surface. If true convergence had not
been reached, the new energy and gradient calculated at the location of the images were added to
the training data set and the model was updated. This procedure was repeated iteratively until the
approximate energy surface was accurate enough for converging on the true MEP.

Proof-of-principle results have also been presented where Gaussian process regression (GPR) [3-
6] is applied to accelerate NEB calculations [7]. Since the calculations are largely based on the
gradient vector of the energy surface, straightforward inclusion of derivative observations [8-12] and
prediction of derivatives can be seen as advantages of GPR for this application. It is also easy to
encode prior assumptions about the smoothness properties of the energy surface into the covariance
function of the Gaussian process (GP) model or learn about these properties from the data. Analytical
expressions for the posterior predictions conditional on the hyperparameters of the GP model allow
both fast predictions and reliable estimation of uncertainties. The predictive performance of GPR has
been shown to be competitive with other machine learning methods especially when the number of
observations is small [13].

The GPR approach to MEP calculations is extended here by introducing two algorithms to accelerate
climbing image nudged elastic band (CI-NEB) calculations, where one of the images is made to
converge to a small tolerance on the highest energy maximum along the MEP [14]. The basic GPR
approach is referred to as the all-images-evaluated (AIE) algorithm, where the accurate energy and
its gradient are evaluated at all intermediate images of the CI-NEB path before the approximation to
the energy surface is updated (see figure 1).

In a more advanced algorithm, the accurate energy and its gradient are evaluated at only one image
before a new approximate energy surface is constructed. We refer to the latter as the one-image-
evaluated (OIE) algorithm (see figure 2). As a probabilistic model, a GP expresses the energy
predictions as probability distributions, which means that the uncertainty of the prediction can also be
estimated, e.g., as the variance of the posterior distribution. This uncertainty estimate is used by the
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Figure 1: Illustration of the progression of the AIE algorithm. Far left: Two-dimensional Müller-
Brown energy surface [15] and the true minimum energy path (red curve). Three panels to the right:
The approximate energy surface predicted by GPR after one, two and three iterations. The red + signs
show the points at which the accurate energy and its gradient have been evaluated. The yellow disks
show the CI-NEB relaxed on the approximate energy surface of each GPR iteration. After each GPR
iteration, final convergence of the path is checked by accurate evaluations, which are then added to
the training data for the following GPR iteration. Final convergence is confirmed after 24 evaluations.

OIE algorithm to select the image to be evaluated in such a way as to give maximal improvement of
the model. This algorithm has similarities with Bayesian optimization in the sense that uncertainties
of a GP model are used to select the locations of new evaluations. However, our approach to find a
local minimum energy path, where the optimal location of an image depends also on the locations of
the neighbouring images, is not fully analogous to the standard framework of Bayesian optimization,
where the GP is used to model a single objective function and the global optimum is searched by
exploring the whole domain.

Figure 2: Illustration of the progression of the OIE algorithm. Upper panel: The approximate energy
surface predicted by GPR after one, two, three and eleven iterations. After iterations 1, 2 and 3, the
accurate energy and its gradient are evaluated at the image where the estimated uncertainty is largest
and the observed data are then added to the training data set for the following GPR iteration. Lower
panel: The estimated uncertainty (standard deviation) of the energy approximation. After eleven
iterations, the path is not displaced further but the final convergence is checked by evaluating the
energy and gradient at each intermediate image one by one, Final convergence is confirmed after 17
evaluations.

Another extension of the GPR approach applies when the overall goal is to estimate the forward
and backward transition rates, which requires evaluating the Hessian matrices including second
derivative information of the PES at the two minimum points. The evaluation of the Hessians can be
done already before finding the MEP to improve the GPR approximations (helps especially in the
beginning when there is little information about the PES).
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3 Experiments

A test problem that has been used in several studies of algorithms for finding MEPs and saddle
points involves an island of seven atoms on the (111) surface of a face-centered cubic (FCC) crystal
[16,17]. The initial, saddle point and final configurations of the atoms for the 13 lowest activation
energy transitions, labeled from A to M , are shown in figure 3. The interaction between the atoms is
described with a simple Morse potential to make the implementation of the benchmark easy.

The average number of energy and gradient evaluations for transitions C – M as a function of the
number of degrees of freedom is shown in figure 3.1 For the smallest number of degrees of freedom,
21, only the seven island atoms are allowed to move while all the substrate atoms are frozen. For the
larger numbers of degrees of freedom, some of the surface atoms are also allowed to move. Starting
with the AIE algorithm, the use of the Hessian input reduces the number of evaluations by about 20%,
but the transition to the OIE algorithm has an even larger effect, a reduction to a half. The OIE results
represent savings of an order of magnitude with respect to the regular CI-NEB calculation.
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Figure 3: Left: The initial (dark blue disks in uppermost left column), saddle point (light blue disks)
and final configuration (purple disks) for the 13 heptamer island transitions. Right: Average number
of energy evaluations for the conventional NEB and variations of the GPR approach.

4 Conclusions

The results presented here show that the GPR approach can reduce the number of energy and gradient
evaluations needed in CI-NEB calculations of MEPs by an order of magnitude. This is important
since a large amount of computer time is used in such calculations. In the future, it will be important
to test the GPR approach also on more complex systems to be able to fully assess its utility and to
develop the methodology further.
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1Transitions A and B are not included in the averages shown in figure 3 because the regular CI-NEB required
an anomalously large number of iterations for some of the intermediate numbers of degrees of freedom. The
results of the GPR algorithms were, however, similar for all numbers of degrees of freedom tested here.
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