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Abstract

While Bayesian optimization (BO) has achieved great success in optimizing
expensive-to-evaluate black-box functions, especially tuning hyperparameters of
neural networks, methods such as random search [13] and multi-fidelity BO (e.g.
Klein et al. [10]) that exploit cheap approximations, e.g. training on a smaller
training data or with fewer iterations, can outperform standard BO approaches that
use only full-fidelity observations. In this paper, we propose a novel Bayesian
optimization algorithm, the continuous-fidelity knowledge gradient (cfKG) method,
that can be used when fidelity is controlled by one or more continuous settings such
as training data size and the number of training iterations. cfKG characterizes the
value of the information gained by sampling a point at a given fidelity, choosing to
sample at the point and fidelity with the largest value per unit cost. Furthermore,
cfKG can be generalized, following Wu et al. [23], to settings where more than one
point can be evaluated simultaneously. Numerical experiments show that cfKG
outperforms state-of-art algorithms when tuning convolutional neural networks
(CNNs) on CIFAR-10 and SVHN.

1 Introduction

In hyperparameter tuning of machine learning models, we seek to find a set of hyperparameters x in
some set A to minimize the validation error f(x), i.e., to solve

min
x∈A

f(x) (1.1)

Evaluating f(x) can take substantial time [1], and may not provide gradient evaluations.

As the computational expense of training and testing a modern deep neural network for a single set of
hyperparameters has grown as long as days or weeks, it has become natural to seek ways to solve (1.1)
more quickly by supplanting some evaluations of f(x) with computationally inexpensive low-fidelity
approximations. Indeed, when training a neural network or most other machine learning models, we
can approximate f(x) by training on less than the full training data, or using fewer training iterations.
Both of these controls on fidelity can be set to achieve either better accuracy or lower computational
cost across a range of values reasonably modeled as continuous.

In this paper, we consider optimization with evaluations of multiple fidelities and costs where the
fidelity is controlled by one or more continuous parameters. We model these evaluations by a
real-valued function g(x, s) where f(x) := g(x, 1m) and s ∈ [0, 1]m denotes the m fidelity-control
parameters. g(x, s) can be evaluated, optionally with noise, at a cost that depends on x and s. In the
context of hyperparameter tuning, we may take m = 2 and let g(x, s1, s2) denote the loss on the
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validation set when training using hyperparameters x with a fraction s1 of the training data and a
fraction s2 of some maximum allowed number of training iterations. We may also set m = 1 and let
s index either training data or training iterations.

Existing literature on multi-fidelity Bayesian optimization include [6, 11, 20, 8, 16] for discrete-
fidelity settings and [2, 21, 10, 14, 9] for continuous-fidelity settings.

In this continuous-fidelity setting, we use the knowledge gradient (KG) approach [4], together with a
computational technique using the envelope theorem developed in Wu et al. [23], to adaptively select
the hyperparameter configurations and fidelities to evaluate in parallel that best support solving (1.1).
This set of points maximize the ratio of the value of information from evaluation against its cost.
Code is available at https://github.com/wujian16/Cornell-MOE.

Unlike most existing work on discrete- and continuous-fidelity Bayesian optimization, Our approach
considers the impact of our measurement on the future posterior distribution over the full feasible
domain, while existing expected-improvement-based approaches consider its impact at only the point
evaluated. One exception is the entropy-search-based method [10], which also considers the impact
over the full posterior. Our approach differs from entropy search in that it chooses points to sample to
directly minimize expected simple regret, while entropy search seeks to minimize the entropy of the
location or value of the global optimizer, indirectly reducing simple regret.

Below, §2 presents the cfKG method and §3 tests cfKG on hyperparameter tuning for deep learning.

2 Continuous-fidelity knowledge gradient

In this section, we propose the continuous-fidelity knowledge gradient (cfKG), a novel Bayesian
optimization algorithm that exploits inexpensive low-fidelity approximations. To describe cfKG
in detail, §2.1 first describes Gaussian process regression for modeling both g(x, s) and its cost
of evaluation. Then, §2.2 presents the cfKG acquisition function, which values sampling a (point,
fidelity) pair according to the ratio of the value of the information gained from sampling that point
at that fidelity, to the cost of doing so. §2.3 generalizes an envelope-theorem based computational
technique developed in Wu et al. [23] to efficiently maximize this acquisition function.

2.1 Gaussian Processes

We put a Gaussian process (GP) prior [17] on the function g or its logarithm. We describe this
procedure placing the prior on g directly, and then discuss below when we recommend instead placing
it on (x, s) 7→ log g(x, s). The GP prior is defined by its mean function µ(0) : A× [0, 1]m 7→ R and
kernel function K(0) : {A× [0, 1]m} × {A× [0, 1]m} 7→ R.

We assume that evaluations of g(x, s) are subject to additive independent normally distributed noise
with common variance σ2. We treat the parameter σ2 as a hyperparameter of our model. Our
assumption of normally distributed noise with constant variance is common in the BO literature [10].

The posterior distribution of g after n function evaluations at points z(1:n) :=
{(x(1), s(1)), (x(2), s(2)), · · · , (x(n), s(n))} with observed values y(1:n) := {y(1), y(2), · · · , y(n)}
remains a Gaussian process [17], and g | z(1:n), y(1:n) ∼ GP(µn,K(n)). This statistical approach
contains several hyperparameters: the variance σ2, and any parameters in the mean and kernel
functions. We treat these hyperparameters in a Bayesian way as proposed in Snoek et al. [19].

When g is the validation error in a hyperparameter optimization problem, we recommend putting a
GP prior on log g(x, s), rather than on g(x, s) directly, because (1) g(x, s) is nonnegative and will be
allowed to be negative after log scaling, better matching the range of values assumed by the GP, and
(2) because g(x, s) can climb steeply over several orders of magnitude as we move away from the
optimal x, making log g(x, s) easier to model. We analogously train a separate GP on the logarithm
of the cost of evaluating g(x, s).

2.2 The cfKG acquisition function

cfKG samples the point and fidelity that jointly maximize an acquisition function, which we define in
this section by adopting the knowledge gradient concept [4] in the continuous-fidelity setting to value
the information gained through one additional sample.
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If we were to stop sampling after n samples, we would select as our solution to (1.1) a point x with
minimum estimated validation error µ(n)(x, 1m), and this point would have a conditional expected
validation error of minx∈A µ

(n)(x, 1m) under the posterior. If instead we took an additional sample
at x(n+1) with the fidelity s(n+1), then the minimum expected validation error under the resulting
posterior would become minx∈A µ

(n+1)(x, 1m). This quantity depends on x(n+1) and s(n+1) through
the dependence of µ(n+1)(x, 1m) on the point and fidelity sampled, and is random under the posterior
at iteration n because µ(n+1)(x, 1m) depends on the observation y(n+1). We discuss this dependence
explicitly in §2.3.

The value of the information gained by sampling at x(n+1) with the fidelity s(n+1) conditioned
on any particular outcome y(n+1) is thus the difference of these two expected validation errors
minx∈A µ

(n)(x, 1m)−minx∈A µ
(n+1)(x, 1m). We then take the expectation of this difference, over

the random outcome y(n+1), to obtain the (unconditional) value of the information gained, and take
the ratio of this value with the cost of obtaining it to obtain the cfKG acquistion function,

cfKG(x, s) =
minx′∈A µ

(n)(x′, 1m)− En

[
minx′∈A µ

(n+1)(x′, 1m) | x(n+1) = x, s(n+1) = s
]

cost(n)(x, s)
,(2.1)

where cost(n)(x, s) is the estimated cost of evaluating at xwith the fidelity s based on the observations
available at iteration n, according to the GP described in §2.1, and En indicates the expectation taken
with respect to the posterior given x(1:n), s(1:n), y(1:n).

The cfKG algorithm chooses to sample at the point x and fidelity s that jointly maximize cfKG(x, s).

max
(x,s)∈A×[0,1]m

cfKG(x, s). (2.2)

Although this acquisition function considers the expected value of an improvement due to sampling,
it differs from expected improvement approaches such as Lam et al. [11] because the point at which
an improvement occurs, argmaxx∈Aµ

(n+1)(x, 1m) may differ from the point sampled. Moreover,
this acquisition function allows joint valuation of both the point x and the fidelity s, while approaches
such as Lam et al. [11] require valuing a point x assuming it will be evaluated at full fidelity and then
choose the fidelity in a second stage.

cfKG generalizes naturally to batch settings where we can evaluate multiple (point, fidelity)
pairs at once. We value joint evaluation of q ≥ 1 points x1:q at fidelities s1:q, where z1:q =
((x1, s1), . . . , (xq, sq)), by

q-cfKG(z1:q) =
minx′∈A µ

(n)(x′, 1m)− En

[
minx′∈A µ

(n+q)(x′, 1m) | z(n+1:n+q) = z1:q
]

max1≤i≤q cost(n)(xi, si)
,

(2.3)
We then modify (2.2) by sampling at the batch of points and fidelities that maximize

max
z1:q⊂A×[0,1]m

q-cfKG(z1:q) (2.4)

2.3 Envelope-theorem-based computational method

In this section, we describe computational methods for solving (2.2) and (2.4). We describe our
method in the context of (2.4), and observe that (2.2) is a special case.

We generalize a recently proposed envelope-theorem based computational method developed for
single-fidelity optimization in [23], which is used to provide unbiased estimators of both q-cfKG and
its gradient. We then use stochastic gradient ascent to optimize the q-cfKG acquisition function.

Following [23], the q-cfKG acquisition function can be expressed as

q-cfKG(z1:q) =
minx∈A µ

(n) (x, 1m)− En

[
minx∈A

(
µ(n) (x, 1m) + σ̃n (x, z1:q)Wq

)]
max1≤i≤q cost(n)(xi, si)

,

where Wq is a standard q-dimensional normal random vector, σ̃n(x, z(1:q)) =

K(n) ((x, 1m), z1:q) (D
(n) (z1:q)

T
)−1, and D(n) (z1:q) is the Cholesky factor of the
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Figure 1: Tuning convolutional neural networks on CIFAR-10 and SVHN with 6 independent runs

covariance matrix K(n) (z1:q, z1:q) + σ2I . ∇q-cfKG(z1:q) can be computed from
−∇En

[
minx∈A

(
µ(n) (x, 1m) + σ̃n (x, z1:q)Wq

)]
and ∇max1≤i≤q cost(n)(z(n+i)), where

differentiability of cost(n)(·) implies max1≤i≤q cost(n)(xi, si) is differentiable almost everywhere.
To compute the first term, under sufficient regularity conditions [12] that we conjecture hold in most
applications to hyperparameter tuning, one can interchange the gradient and expectation operators,

En

[
min
x∈A

(
µ(n) (x, 1m) + σ̃n (x, z1:q)Wq

)]
= En

[
∇min

x∈A

(
µ(n)(x, 1m) + σ̃n (x, z1:q)Wq

)]
.(2.5)

This technique is called infinitesimal perturbation analysis (IPA) [12].

Since multiplication, matrix inversion (when the inverse exists), and Cholesky factorization [18]
preserve continuous differentiability, (x, z1:q) 7→

(
µ(n)(x, 1m) + σ̃n(x, z1:q)Wq

)
is continuously

differentiable under mild regularity conditions. When this function is continuously differentiable and
A is compact, the envelope theorem [15, Corollary 4] implies

En

[
∇min

x∈A

(
µ(n)(x, 1m) + σ̃n (x, z1:q)Wq

)]
=En

[
∇
(
µ(n) (x∗(Wq), 1m) + σ̃n (x

∗(Wq), z1:q) ·Wq

)]
,

=En [∇σ̃n (x∗(Wq), z1:q) ·Wq] ,

where x∗(Wq) ∈ argminx∈A
(
µ(n)(x, 1m) + σ̃n(x, z1:q)Wq

)
. We can use this unbiased gradient

estimator within stochastic gradient ascent [5] to solve the optimization problem (2.4).

3 Experiments: tuning convolutional neural nets on CIFAR-10 and SVHN

In this section, our benchmarks include the traditional Bayesian optimization algorithms KG [22]
and EI [7]. We also compare with Hyperband [13] in the CIFRA-10 experiment. We use squared-
exponential kernels with constant mean functions and integrate out the GP hyperparameters by
sampling M = 10 sets of hyperparameters using the emcee package [3].

We tune convolution neural networks (CNNs) on CIFAR-10 and SVHN. Our CNN consists of 3
convolutional blocks and a softmax classification layer. Each convolutional block consists of two
convolutional layers with the same number of filters followed by a max-pooling layer. There is no
dropout or batch-normalization layer. We split the CIFAR-10 dataset into 40000 training samples,
10000 validation samples and 10000 test samples. We split the SVHN training dataset into 67235
training samples and 6000 validation samples, and use the standard 26032 test samples. We apply
standard data augmentation: horizontal and vertical shifts, and horizontal flips. We optimize 5
hyperparameters to minimize the classification error on the validation set: the learning rate, batch
size, and number of filters in each convolutional block. cfKG and q-cfKG use two fidelity controls:
the size of the training set and the number of training iterations. Hyperband uses the size of the
training set as its resource (it can use only one resource or fidelity), using a bracket size of smax = 4
as in Li et al. [13] and the maximum resource allowed by a single configuration set to 40000. We set
the maximum number of training epochs for all algorithms to 50 for CIFAR-10 and 40 for SVHN.
Fig. 1 shows the performance of cfKG relative to several benchmarks. cfKG successfully exploits the
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cheap approximations and find a good solution much faster than KG and Hyperband. When we train
using optimized hyperparameters on the full training dataset for 200 epochs, test data classification
error is ∼ 12% for CIFAR-10 and ∼ 5% for SVHN.
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