
RoBO: A Flexible and Robust Bayesian Optimization
Framework in Python

Aaron Klein
Department of Computer Science

University of Freiburg
kleinaa@cs.uni-freiburg.de

Stefan Falkner
Department of Computer Science

University of Freiburg
sfalkner@cs.uni-freiburg.de

Numair Mansur
Department of Computer Science

University of Freiburg
mansurm@cs.uni-freiburg.de

Frank Hutter
Department of Computer Science

University of Freiburg
fh@cs.uni-freiburg.de

Abstract

Bayesian optimization is a powerful approach for the global derivative-free opti-
mization of non-convex expensive functions. Even though there is a rich literature
on Bayesian optimization, the source code of advanced methods is rarely available,
making it difficult for practitioners to use them and for researchers to compare
to and extend them. The BSD-licensed python package ROBO, released with
this paper, tackles these problems by facilitating both ease of use and extensibil-
ity. Beyond the standard methods in Bayesian optimization, RoBO offers (to the
best of our knowledge) the only available implementations of Bayesian optimiza-
tion with Bayesian neural networks, multi-task optimization, and fast Bayesian
hyperparameter optimization on large datasets (Fabolas).

1 Introduction

Bayesian optimization (BO) is a successful method for globally optimizing non-convex, expensive,
and potentially noisy functions that do not offer any gradient information [Shahriari et al., 2016, Jones
et al., 1998]. Due to its sample efficiency, BO has proven to be particularly useful for applications in
which single function evaluations are very expensive.

In its vanilla blackbox version, BO tries to find a global optimizer x ∈ argmin f(x) of a blackbox
function f : X → R, only through noisy observations y(x) = f(x) + ε of the function, where
ε ∼ N (0, σ2

noise). At BO’s core is a probabilistic model p(f |D) that captures the current belief of the
objective function f given previous observations D = {(x0, y0), . . . , (xi, yi)}. In each iteration i,
BO optimizes a so-called acquisition function a : X→ R based on p(f |D) that trades off exploration
and exploitation to determine the next query point xnew ∈ argmax a(x). After observing the
outcome, p(f |D) is updated and the next iteration begins.

In recent years, the traditional blackbox constraint has been lifted and several extensions of Bayesian
optimization have been studied:

• The considerable cost usually associated with an observation can sometimes be reduced
by evaluating related tasks which can be queried in addition to the function of interest as
studied in the multi-task BO framwork of Swersky et al. [2013]. A special case of this is
training a machine learning algorithm on only a subset of the data, as studied by Klein et al.
[2017a].

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

• If the function to be optimized returns intermediate results, such as, e.g., the trace of an
optimizer or the learning curve of a neural network, this additional information can be used to
build a better probabilistic model. Handling this additional information effectively requires
scalable models; to address this problem Swersky et al. [2014] introduced a special-purpose
approximate GP and Klein et al. [2017b] studied a Bayesian neural network approach.

• Previous evaluations on related functions (e.g., other datasets) can accelerate the optimiza-
tion, as studied for example by Swersky et al. [2013] and Feurer et al. [2015].

To facilitate work on Bayesian optimization that goes beyond blackbox optimization, we introduce
ROBO, a new flexible Bayesian optimization framework in Python.

2 ROBO

ROBO is a new Bayesian optimization framework that offers an easy-to-use python interface in-
spired by the API of SciPy [Jones et al., 2001] to allow users to deploy it easily within their
python programs. All code is published under the permissive BSD license and available at
https://github.com/automl/RoBO. Tutorials and fully worked examples for using ROBO are avail-
able as part of the package’s documentation. It provides implementations of different models and
acquisition functions and in this way offers some robustness to guard against model mismatch.

2.1 Blackbox Optimization

At ROBO’s core is an implementation of the standard Bayesian optimization algorithm that allows
for a range of different models and acquisition functions.

Models. While most other BO packages only support Gaussian processes (GPs) [Rasmussen and
Williams, 2006, Snoek et al., 2012] to model p(f |D), GPs are not always the best choice. For
example, while they tend to yield the best results in low-dimensional, continuous spaces, random
forests [Breimann, 2001, Hutter et al., 2011] have been shown to yield better performance in high-
dimensional spaces with conditional and categorical choices [Eggensperger et al., 2013]. In terms
of computational complexity, vanilla GPs are limited by their cubic scaling in the number of data
points, but BO with random forests or approximate GPs [Hutter et al., 2010] easily scales to many
data points. A recent popular class of models are Bayesian neural networks [Neal, 1996], which
combine well-calibrated uncertainty estimates with strong scalability to high dimensions and many
data points; in particular, Snoek et al. [2015] used Bayesian linear regression based on the features in
the last layer of a neural network, and Springenberg et al. [2016] used a fully-Bayesian treatment in
their Bohamiann method by sampling the network weights using stochastic gradient Hamiltonian
Monte-Carlo [Chen et al., 2014].

ROBO implements all of GPs, random forests, and the fully Bayesian neural network from Bohami-
ann, making it the BO framework that – to the best of our knowledge – supports the largest breadth
of models; in particular, we are not aware of another BO framework that supports Bayesian neural
networks. Figure 1 visualizes ROBO’s different model fits on a small, one-dimensional example to
illustrate the different models.

In contrast to random forests, GPs are usually very brittle with respect to their own hyperparameters.
ROBO supports two different ways to tune the GP hyperparameters: (1) maximizing the marginal log-
likelihood [Rasmussen and Williams, 2006] or (2) marginalizing over hyperparameters by sampling
from the marginal log-likelihood [Snoek et al., 2012]. For each hyperparameter we define the same
priors as described by Snoek et al. [2012].

Acquisition functions. ROBO supports standard acquisition functions from the literature, such as
expected improvement (EI) [Jones et al., 1998], upper confidence bound [Srinivas et al., 2010] and
probability of improvement [Jones et al., 1998]. It also supports entropy search [Hennig and Schuler,
2012], which, instead of trying to sample points with low function values, models the distribution of
the optimum pmin(x | D) := p(x ∈ argminx′∈X f(x

′) | D) and, in each iteration, selects the point
xnew that minimizes the entropy of this distribution. ROBO contains two different versions of this
acquisition function, which use the EPMGP algorithm [Cunningham et al., 2012] or MC sampling
to approximate pmin, respectively. ROBO supports the use of CMA-ES [Hansen, 2006], DIRECT

2

https://github.com/automl/RoBO

Figure 1: Comparison of different models for the objective function in a one dimensional example.
Left: GP, middle: Bayesian neural network; right: random forest. While the Gaussian process is very
expressive and allows to incorporate priors easily, the other two scale better to higher dimensions and
a large number of observations.

[Jones et al., 1993], random search, and various optimizers from SciPy to optimize its acquisition
function.

2.2 Beyond Blackbox Optimization

ROBO also goes beyond the optimization of a blackbox function f : X → R by allowing the
specification of a function g : X×T → R that includes a task t ∈ T as additional input and is linked
to f by f(x) = g(x, ttarget). Specifically, ROBO implements two state-of-the-art methods for such
problems:

Multi-Task Bayesian Optimization (MTBO). MTBO [Swersky et al., 2013] enables BO to make
use of previously sampled function observations on different, but correlated tasks. This instantiates
the domain T of the additional input variable t to a finite set, often just with two elements: an
auxiliary task taux and an target task ttarget. The auxiliary task can, e.g., describe the same algorithm
evaluated on another dataset, a smaller dataset, or intermediate results in case of an iterative algorithm.

Fabolas. To speed up the hyperparameter optimization of machine learning algorithms on large
datasets, Klein et al. [2017a] developed a GP-based BO method that can reason over arbitrary subsets
of the training data. Their method Fabolas instantiates the domain of task variable t to R, or, in
general to Rd. Applied to dataset subsampling, this allows it to quickly learn about the performance
with a dataset size without ever evaluating with it. In particular, it can learn about the performance on
the full dataset by only evaluating on subsets of various sizes and extrapolating its predictions.

3 Experiments

We now show two experiments that highlight ROBO’s flexibility. First, we compare the different
models and acquisition functions implemented in ROBO against the GP-based BO tool Spearmint
[Snoek et al., 2012] and the random forest based BO tool SMAC [Hutter et al., 2011]. Then, we
demonstrate the benefits of going beyond blackbox optimization by exploiting cheaper tasks. We
provide code for running all of these experiments (as well as examples and tutorials) in ROBO’s
repository at https://github.com/automl/RoBO.

In the first experiment, we optimize three different synthetic functions from the blackbox optimization
literature. In each iteration, we query every optimizer to return the estimated global optimum x̂? (i. e.
incumbent) and report the immediate regret |f(x̂?)− f(x?)| to the true optimum x?. The methods
are the following:

• GP: GP model, EI acquisition function, max. likelihood estimate of hyperparameters
• GP-MCMC: same as GP, but samples hyperparameters from the marginal likelihood
• Entropy-Search: same as GP-MCMC, but information gain as the acquisition function
• Bohamiann: Bayesian neural network model, expected improvement acquisition function
• RF: Random forest model, expected improvement acquisition function

Figure 2 shows the mean immediate regret of 50 independent runs of each method. As expected,
the Gaussian process based optimization methods (GP, GP-MCMC, Entropy Search, and Spearmint)

3

https://github.com/automl/RoBO

Figure 2: Immediate regret of 50 independent runs for various different optimization methods for
Rosenbrock (left), Branin (middle) and Hartmann3 (right).

work very well on these low-dimensional continuous benchmarks, especially when the GP’s hyper-
parameters are properly treated (GP-MCMC and Spearmint). ROBO’s performance is very similar
to that of Spearmint when using the same model type (GP-MCMC). While the random forest and
Bayesian neural network models do not perform as well as the GP in these small-scale experiments,
they exhibit better scaling behavior to high dimensions and many function evaluations.

Figure 3: The test error achieved by different methods on
the SVM surrogate task. Note the speedup by orders of
magnitude achieved by Fabolas and MTBO utilizing subsets
of the data for cheaper evaluations.

In the second experiment, we show-
case the large improvements that are
possible by going beyond blackbox
optimization. As a benchmark, we
optimize the C and γ hyperparame-
ters of a SVM on MNIST, using an
additional input s to actively control
the size of the dataset used for eval-
uating each combination of C and γ.
Following Eggensperger et al. [2015],
we constructed a surrogate benchmark
based on performance evaluations for
400 different combinations of C and
γ on MNIST collected by Klein et al.
[2017a] for dataset sizes ranging in
powers of two from 1/512 of the dataset
to the full one, and perform all our
experiments on this surrogate bench-
mark.1

While standard BO methods are of
course applicable for this problem, specialized methods can be dramatically faster by perform-
ing most of their optimization on cheap subsets of the data. In particular, we study Fabolas and
MTBO, in the latter using a quarter of the total dataset as the auxiliary task. In Figure 3, we report the
test error of the incumbent identified and the estimated wall-clock time that was necessary to find this
configuration. We note that both MTBO and Fabolas have long converged by the time the blackbox
optimization techniques have finished their first function evaluation. This is possible due to the much
faster function evaluations when running on subsets of the data and demonstrates why it is crucial to
go beyond the limiting blackbox formulation in hyperparameter optimization.

4 Conclusion

We introduced ROBO, a flexible Bayesian optimization framework in python. For standard GP-based
blackbox optimization, its performance is on par with Spearmint while using the permissive BSD
license. Most importantly, to the best of our knowledge, ROBO is the first BO package that includes
Bayesian neural network models and that implements specialized BO methods that go beyond the
blackbox paradigm to allow orders of magnitude speedup.

1Using a surrogate instead of evaluating an actual SVM in each function evaluation is much cheaper (thus
allowing for more repetitions in order to obtain more reliable results) and also allows us to easily make the code
for running the entire benchmarking experiment available. The repository also includes a fully-worked example
for using Fabloas to tune an actual SVM implemented in scikit-learn [Pedregosa et al., 2011].

4

Acknowledgment

This work has partly been supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme under grant no. 716721, by the Euro-
pean Commission under grant no. H2020-ICT-645403-ROBDREAM, and by the German Research
Foundation (DFG) under Priority Programme Autonomous Learning (SPP 1527, grant HU 1900/3-1).

References
B. Shahriari, K. Swersky, Z. Wang, R. Adams, and N. de Freitas. Taking the human out of the loop: A review of

Bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2016.
D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of expensive black box functions. JGO, 13:

455–492, 1998.
K. Swersky, J. Snoek, and R. Adams. Multi-task Bayesian optimization. In Proc. of NIPS’13, pages 2004–2012,

2013.
A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast Bayesian optimization of machine learning

hyperparameters on large datasets. In Proc. of AISTATS’17, 2017a.
K. Swersky, J. Snoek, and R. Adams. Freeze-thaw bayesian optimization. arXiv:1406.3896, 2014.
A. Klein, S. Falkner, J. T. Springenberg, and F. Hutter. Learning curve prediction with Bayesian neural networks.

In Proc. of ICLR’17, 2017b.
M. Feurer, T. Springenberg, and F. Hutter. Initializing Bayesian hyperparameter optimization via meta-learning.

In Proc. of AAAI’15, pages 1128–1135, 2015.
E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python. http://www.scipy.org/,

2001.
C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2006.
J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning algorithms. In

Proc. of NIPS’12, pages 2960–2968, 2012.
L. Breimann. Random forests. MLJ, 45:5–32, 2001.
F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm configura-

tion. In Proc. of LION’11, pages 507–523, 2011.
K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-Brown. Towards an

empirical foundation for assessing Bayesian optimization of hyperparameters. In NIPS Workshop on Bayesian
Optimization in Theory and Practice (BayesOpt’13), 2013.

F. Hutter, H. Hoos, K. Leyton-Brown, and K. Murphy. Time-bounded sequential parameter optimization. In
Proc. of LION’10, pages 281–298, 2010.

R. Neal. Bayesian learning for neural networks. PhD thesis, University of Toronto, 1996.
J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary, Prabhat, and R. Adams. Scalable

Bayesian optimization using deep neural networks. In Proc. of ICML’15, pages 2171–2180, 2015.
J. Springenberg, A. Klein, S.Falkner, and F. Hutter. Bayesian optimization with robust bayesian neural networks.

In Proc. of NIPS’16, 2016.
T. Chen, E.B. Fox, and C. Guestrin. Stochastic gradient Hamiltonian Monte Carlo. In Proc. of ICML’14, 2014.
N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: No regret

and experimental design. In Proc. of ICML’10, pages 1015–1022, 2010.
P. Hennig and C. Schuler. Entropy search for information-efficient global optimization. JMLR, 98888(1):

1809–1837, 2012.
J. Cunningham, P. Hennig, and S. Lacoste-Julien. Approximate gaussian integration using expectation propaga-

tion. pages 1–11, January 2012.
N. Hansen. The CMA evolution strategy: a comparing review. In J.A. Lozano, P. Larranaga, I. Inza, and

E. Bengoetxea, editors, Towards a new evolutionary computation. Advances on estimation of distribution
algorithms, pages 75–102. Springer, 2006.

D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without the lipschitz constant.
Journal of Optimization Theory and Applications, 79(1):157–181, Oct 1993.

K. Eggensperger, F. Hutter, H.H. Hoos, and K. Leyton-Brown. Efficient benchmarking of hyperparameter
optimizers via surrogates. In Proc. of AAAI’15, pages 1114–1120, 2015.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. JMLR, 12:2825–2830, 2011.

5

	Introduction
	RoBO
	Blackbox Optimization
	Beyond Blackbox Optimization

	Experiments
	Conclusion

