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Abstract

The Thompson Sampling exhibits excellent results in practice and it has been shown
to be asymptotically optimal. The extension of Thompson Sampling algorithm
to the Switching Multi-Armed Bandit problem, proposed in [13], is a Thompson
Sampling equiped with a Bayesian online change point detector [1]. In this paper,
we propose another extension of this approach based on a Bayesian aggregation
framework. Experiments provide some evidences that in practice, the proposed
algorithm compares favorably with the previous version of Thompson Sampling
for the Switching Multi-Armed Bandit Problem, while it outperforms clearly other
algorithms of the state-of-the-art.

1 Introduction
We consider the non-stationary multi-armed bandit problem with a set K of K independent arms.
At each round t, the agent chooses an action kt P K and observes a reward xkt . In a stationary
environment, the agent has to explore to find the best arm and to exploit it to maximize his gain.
Efficient algorithms [4, 7, 11] have been proposed for handling the so-called exploration-exploitation
dilemma. In an evolving environment, the best arm can change during time and hence the agent has
to explore more. The adversarial bandits handles non-stationary environments by considering that
a sequence of deterministic rewards is chosen in advance by an oblivious adversary. Rate optimal
algorithms have been proposed to find the best arm or the best sequence of arms of the run in
[5, 14, 3]. Another approach for handling non-stationary environment is to consider that the rewards
are generated by an unknown stochastic process that evolves during time. In the switching bandit
problem [10, 9, 2], the mean rewards of arms change abruptly. In comparison to the adversarial
approach, the advantage of non-stationary stochastic approach is that with some mild assumptions,
stochastic algorithms, which are more efficient in practice than adversarial algorithms, can be used.
For practical and theoretical reasons, the recent years have seen an increasingly interest for the oldest
bandit algorithm, the Thompson Sampling [15]. It exhibits excellent results in practice [8], while it is
asymptotically optimal [11]. In [13], the authors propose an adaptation of the Thompson Sampling
to the switching bandit problem. To be consistent with the Bayesian approach, rather than using a
frequentist drift detector used in [10, 2], the authors use a Bayesian online change point detection [1]
combined with the Thompson Sampling algorithm. In this paper, we propose a similar approach of
[13] which is based on a Bayesian aggregation of a growing number of experts seen as learners. Our
approach compares favorably with the one of [13].

2 Problem formulation
Let us consider an agent facing a non-stationary multi-armed bandit problem with a setK � t1, ...,Ku
ofK independent arms. At each round t P rr1, T ss, the agent chooses to observe one of theK possible
actions. When playing the arm kt at time t, a reward xkt is received, where xkt � B pµkt,tq is a
random variable drawn from a Bernoulli distribution of expectation µk,t. Let µ�t � maxkPK tµk,tu
denotes the best expected reward at round t, k�t � arg maxkPK tµk,tu the best arm at round t, kt the
action chosen by the decision-maker at time t and xkt the reward obtained at the same time.
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Changes in the Bernoulli distributions expectations It should be noted that µk,t, i.e. the reward
mean of arm k at time t changes over time according to a global abrupt switching model parametrized
with an unknown hazard function hptq P r0, 1s assumed to be a constant hptq � ρ such that:

µk,t �

"
µk,t�1 with probability 1 � ρ

µnew � Up0, 1q with probability ρ
(1)

When the behavior’s environment is modeled by equation (1) for all k P K, the problem setting is
called a Global Switching Multi-Armed Bandit (GS-MAB), i.e. when a switch happens all arms
change their expected rewards. Where changes occur independently for each arm k (i.e. arms change
points are independent from an arm to another), the problem setting is called a Per-arm Switching
Multi-Armed Bandit. For the sake of clarity, in the following we will focus on GS-MAB.

Sequence of change points It should be noted that for each GS-MAB, it exists a non-decreasing
change points sequence of length ΥT denoted by pτκqκPrr1,ΥT�1ss P NΥT�1 where:"

@ κ P rr1,ΥT ss, @ t P Tκ � rrτκ � 1, τκ�1ss, @ k P K, µk,t � µk,rκs
τ1 � 1   τ2   ...   τΥT�1 � T

In this case, µ�rκs � maxk
 
µk,rκs

(
denotes the highest expected reward at epoch Tκ.

Pseudo Cumulative Regret for the switching environment In a switching environment, the
pseudo cumulative regret RpT q up to time T is defined as the expected difference between the
rewards obtained by our policy and those received by the oracle which always plays the best arm k�rκs
at each epoch Tκ such as:

R pT q �
Ţ

t�1

µ�t � E

�
Ţ

t�1

xkt

�
�

ΥŢ

κ�1

�
|Tκ|µ�rκs � E

�
τκ�1̧

t�τκ�1

xkt

��

3 Global Switching Thompson Sampling with Bayesian Aggregation
3.1 The Thompson Sampling algorithm
Unlike optimistic algorithms belonging to the UCB family [4], which are often based on
confidence intervals, the Thompson Sampling deals with Bayesian tools by assuming a Beta
prior distribution πk,t�1 � Betapα0, β0q on each arm for some α0, β0 ¡ 0. Based
on the rewards observed xkt , the posterior distribution πk,t is updated such as: πk,t �
Beta pαk,t � #preward � 1q � α0, βk,t � #preward � 0q � β0q. At each time, the agent takes
a sample θk,t from each πk,t and then plays the arm kt � arg maxk θk,t. Formally, by denoting
Dt�1 �

�t�1
i�1 xi the history of past rewards we write: θt � pθ1,t, ..., θK,tq � Ppθt|Dt�1q �±K

k�1 πk,t. Recently, the Thompson Sampling has been shown to be asymptotically optimal [11], i.e.
the expectation of the pseudo-cumulative regret reaches the Lai and Robbins lower bound on regret
in the stochastic Bernoulli multi-armed bandit setting [12].

3.2 Decision making based on Bayesian aggregation

Best achievable performance: the Thompson Sampling oracle Let TS� denotes the oracle that
knows exactly the change points τκ. It simply restarts a Thompson Sampling at these change points.
Assume that ΥT is the overall number of change points observed until T , then TS� runs successively
ΥT Thompson Sampling processes starting at τκ � 1 and ending at τκ�1.
Notion of expert Let t P N� and i P rr1, tss. An expert fi,t is a Thompson Sampling procedure
which has started at time i. The expert fi,t observes exactly t� i rewards from the environment.
Expert Aggregation Like [13], to characterize the occurrence of changes, we use the expert fi,t as
an index to access in the memory the parameters of the model created at time i. The computation
of Ppθt|Dt�1q is done by taking into account the distribution wi,t � P pfi,t|Dt�1q of the expert fi,t
such as:

Ppθt|Dt�1q �
ţ

i�1

Ppθt|Dt�1, fi,tqPpfi,t|Dt�1q (2)

Then, unlike the sampling procedure used in [13], we build the index θk,t of arm k at time t by
launching a Bayesian aggregation of a growing number of experts. The estimation of the expert
distribution is done recursively according to the work of [1] where:

P pfi,t|Dt�1qloooooomoooooon
Expert distribution at t

∝
t�1̧

i�1

change point priorhkkkkkkikkkkkkj
Ppfi,t|fi,t�1q Ppxkt |fi,t�1, Dt�2qloooooooooomoooooooooon

Instantaneous gain

Expert distribution at t�1hkkkkkkkikkkkkkkj
Ppfi,t�1|Dt�2q (3)
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The change point prior Ppfi,t|fi,t�1q is naturally computed following equation (1):
Ppfi,t|fi,t�1q � p1 � ρq1 pi   tq � ρ1 pt � 1q (4)

Thus, the inference model takes the following form (Up to a normalization factor):"
Growth probability: Ppfi,t|Dt�1q ∝ p1 � ρq � Ppxkt |fi,t�1, Dt�2q � Ppfi,t�1|Dt�2q

change point probability: Ppft,t|Dt�1q ∝ ρ
°t�1
i�1 Ppxkt |fi,t�1, Dt�2q � Ppfi,t�1|Dt�2q

(5)

It should be noted that Ppxkt |fi,t�1, Dt�2q is a Bernoulli distribution of expectation
αkt,i,t�1

αkt,i,t�1�βkt,i,t�1
, where αkt,i,t�1 and βkt,i,t�1 are the hyper-parameters of the arm kt learned

by the expert fi,t�1. Let li,t�1 denotes the instantaneous logarithmic loss associated to the fore-
caster fi,t�1 such as: Ppxkt |fi,t�1, Dt�2q � exp p�li,t�1q, then Algorithm 1 provides us an index
prediction of each arm k at time t based on a Bayesian aggregation of the available experts.

Algorithm 1 Bayesian Aggregation with a growing number of experts
for t � 2, ... do

-1- Update: @i P t1, ..., t� 1u wi,t Ð p1 � ρqwt�1,i exp p�li,t�1q

-2- Create new expert starting at t: wt,t Ð ρ
°t�1
i�1 wt�1,i exp p�li,t�1q

-3- Predict arm index: @ k P K θk,t Ð
°t�1
i�1 θk,i,twi,t°t�1
i�1 wi,t

where: θk,i,t � Beta pαk,i,t, βk,i,tq

Finally, by plugging the Bayesian aggregation into the formalism of [13], we get the Global Switching
Thompson Sampling with Bayesian Aggregation (Global-STS-BA), described in Algorithm 2.

Algorithm 2 Global Switching Thompson Sampling with Bayesian Aggregation
1: procedure GLOBAL-STS-BA(K, T, α0, β0, ρ)
2: tÐ 1, w1,t Ð 1, and @k P K αk,1,t Ð α0, βk,1,t Ð β0 � Initializations
3: for t ¤ T do � Interaction with environment
4: kt Ð CHOOSEARM ptwu

t
, tαu

t
, tβu

t
q

5: xkt Ð PLAYARMpktq � Bernoulli trial
6: twut�1 Ð UPDATEEXPERTWEIGHT ptwut , tαukt,t , tβukt,t , xkt , ρq

7: tαut�1 , tβut�1 Ð UPDATEARMMODELptαut , tβut , xkt , ktq

8: procedure CHOOSEARM(twut , tαut , tβut)
9: @ k P K @ i P rr1, tss θk,i,t Ð Beta pαk,i,t, βk,i,tq

10: return arg maxk
°
iPrr1,tss

wi,t°
jPrr1,tss wt,j

θk,i,t � Bayesian aggregation

11: procedure UPDATEEXPERTWEIGHT(twut , tαukt,t , tβukt,t , xkt , ρ)

12: lt,i Ð �xkt log
�

αkt,t,i
αkt,t,i�βkt,t,i

	
� p1 � xktq log

�
βkt,t,i

αkt,t,i�βkt,t,i

	
@ i P rr1, tss

13: wt�1,i Ð p1 � ρqwi,t exp p�lt,iq @ i P rr1, tss � Increasing the size of expert fi,t
14: wt�1,t�1 Ð ρ

°
i wi,t exp p�lt,iq � Creating new expert starting at t� 1

15: return twut�1

16: procedure UPDATEARMMODEL(tαut , tβut , xkt , kt)
17: αkt,t�1,i Ð αkt,i,t � 1 pxkt � 1q @ i P rr1, tss
18: βkt,t�1,i Ð βkt,i,t � 1 pxkt � 0q @ i P rr1, tss
19: αk,t�1,t�1 Ð α0, βk,t�1,t�1 Ð β0 @ k P K � Initializing new expert
20: return tαut�1 , tβut�1

Global-STS-BA In the global switching setting, when a switch occurs, all arms change their
expected pay-off at the same time. It should be noted that the data from all plays collaborate in
the posterior of the expert distribution estimation (UPDATEEXPERTWEIGHT). The experts tell us
how much previous observed data can be used in the arm indexes prediction, i.e. when a switch
occurs all past data have not to be taken into account in the arm characterizations because of their
obsolete information. The change point detection concept is based on a tracking of the optimal expert
(see Appendix B.1). Indeed, the total mass of the expert distribution wi,t tends to focus around the
optimal expert fτκ,t i.e. the expert starting at the most recent change point τκ and corresponds to
the most appropriate characterization of the environment. The Bayesian aggregation exploits this
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concentration to highlight the contribution of the most appropriate experts (starting around the most
recent change point τκ) in the arm indexes prediction. The concentration around fτκ,t is possible
thanks to the inference model of equation (5). In fact, when a change occurs the instantaneous gain
P pxkt |fi,t�1, Dt�2q of all experts starting before the change point suddenly fall down because of
their wrong estimation of the environment, giving the advantage to the experts newly created while
annihilating the former ones (see Appendix B.1). At this point, we deviate from [13] and instead of
sampling the expert distribution and then sampling the arms, we index each arm k by launching an
overall Bayesian aggregation of samples taken from the posterior distribution of arm k related to
the hyper-parameters tαuk,t , tβuk,t (CHOOSEARM). Finally, the agent chooses to pull the arm with
highest index. This process allows us to avoid the sampling noise induced by Global-STS and by this
way the model chosen at time t tends to better fit the unknown environment (figure 1).

4 Experiments
In all the experiments, we consider a GS-MAB of three arms observing three change points occurring
at each 1000 rounds. Experiments are run 100 times. The parameters of the state-of-the art algorithms
are chosen to be experimentally optimal. Exp3, Exp3P and Exp3S [5] are launched with an exploration
rate (γ � 5%). We run Exp3R [2], Rexp3 [6] and SW-UCB [9] respectively with H � 1000,
∆T � 1000 and τ � 500. Global-STS [13] and Global-STS-BA are outperforming the well
parametrized state of art non stationary MAB algorithms (figure 1).
Replacing the expert distribution sampling used in [13] with the Bayesian Aggregation allows us to
obtain performances challenging those of the Thompson Sampling Oracle (figure 1).

Figure 1: Overall comparison with the non-stationary state of art and the TS Oracle.

5 Conclusion and future works
We have proposed Global-STS-BA: an extension of the Thompson Sampling for the Switching Bandit
Problem based on a Bayesian aggregation framework. From the experiments, the proposed algorithm
compares favorably with the previous version of the Global Switching Thompson Sampling [13],
outperforming clearly other algorithms of the state-of-the-art. It is worth noting that Global-STS-BA
challenges the Thompson sampling oracle, an oracle which already knows the change points. These
results arise from the fact that Global-STS-BA is based on the Bayesian concept of tracking the best
experts which allows us to catch efficiently the change points. The proposed algorithm is obviously
extended to the Per-arm Switching Multi-Armed Bandit by allowing an expert distribution per arm
(see Appendix A). The next step of this work is to analyze the Global-STS-BA in term of regret.
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A Extension to the per-arm switching setting

A.1 Per-Arm Switching Thompson Sampling with Bayesian Aggregation
(Per-Arm-STS-BA)

In the per-arm switching setting, since the changes occur independently from an arm to another, each
arm k will have its own expert distribution denoted by twutk. To estimate twutk at each time step
t, we need to build some recursive message-passing algorithm. The main difference between the
global and the per-arm version of the message-passing is that the instantaneous gain will be used in
the update of the expert distribution associated to the pulled arm kt. For the other arms not pulled,
the instantaneous gain won’t intervene in the expert distribution [13]. More formally, if we denote by
fi,t,k the expert associated to the arm k at time t which has been introduced at time i, then the expert
distributions are updated as follow:

Ppfi,t,k|Dt�1q ∝

#°t�1
i�1 P pfi,t,k|fi,t�1,kqPpxkt |fi,t�1,k, Dt�2qPpfi,t�1,k|Dt�2q if k is pulled°t�1
i�1 P pfi,t,k|fi,t�1,kqPpfi,t�1,k|Dt�2q otherwise

Then, we model the changes of the arm k with a constant switching rate γk such that:

P pfi,t,k|fi,t�1,kq �

"
1 � ρk if i   t

ρk if i � t

Then, following the inference model used in the global switch, we deduce the following expert
distributions update rules (Up to a normalization factor):

Growth probability: P pfi,t,kq ∝
"
p1 � ρkqPpxkt |fi,t�1,kqPpfi,t�1,kq if k is pulled
p1 � ρkqPpfi,t�1,kq otherwise

change point probability: Ppft,t,kq ∝

#
ρk

°t�1
i�1 Ppxkt |fi,t�1,kqPpfi,t�1,kq if k is pulled

ρk
°t�1
i�1 Ppfi,t�1,kq otherwise

Notice that: Ppxkt |fi,t�1,kq still a Bernoulli distribution of expectation αkt,i,t�1

αkt,i,t�1�βkt,i,t�1
, where

αkt,i,t�1, βkt,i,t�1 are the hyper-parameters of arm kt at time t� 1 learned by the expert fi,t�1,kt
which is associated to the change point model of arm kt. We define:

Ppxkt |fi,t�1,ktq � exp p�li,t�1q
where: li,t�1 denotes the instantaneous logarithmic loss of the pulled arm kt associated to the
forecaster fi,t�1,kt . For convenience, we write: wt,i,k � Ppfi,t,k|Dt�1q. Then, we naturally extend
the Bayesian aggregation used in the global switching setting to the per-arm Bayesian Aggregation
(Algorithm 3).

Algorithm 3 Per-arm Bayesian Aggregation
for t � 2, ... do

-1- Update: @i P t1, ..., t� 1u @ k P K wt,i,k Ð p1 � ρkqwt�1,i,k exp p�li,t�1q
1pk�ktq

-2- Create new expert starting at t: @ k P K wt,t,k Ð ρk
°t�1
i�1 wt�1,i,k exp p�li,t�1q

1pk�ktq

-3- Predict arm index: @ k P K θk,t Ð
°t�1
i�0 θk,i,twt,i,k°t�1
i�0 wt,i,k

where: θk,i,t � Beta pαk,i,t, βk,i,tq

Then, by plugging the per-arm Bayesian Aggregation into the formalism of the Global-STS-BA
we get the Per-arm Switching Thompson Sampling with Bayesian Aggregation (Per-arm-STS-BA)
described in Algorithm 4.

A.2 Experiments

In all the experiments, we consider a Per-Arm Switch MAB of three arms observing several change
points. Experiments are run 100 times. Per-Arm-STS [13] and Per-Arm-STS-BA are outperforming
the well parametrized state of art non stationary MAB algorithms (figure A.2). Exp3, Exp3P and
Exp3S [5] are launched with an exploration rate (γ � 5%). We run Exp3R [2], Rexp3 [6] and
SW-UCB [9] respectively with H � 600, ∆T � 600 and τ � 600. Replacing the expert distribution
sampling used in STS with the Bayesian Aggregation allows us to obtain performances challenging
those of the Thompson Sampling Oracle (figure A.2).
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(a) (b)

Figure 2: Overall comparison with the state of art and the oracle.

B Numerical Illustrations in the global switching setting

B.1 Tracking the optimal expert in the global switching setting

Optimal expert Let t ¡ 0 and let τrts denotes the most recent change point before time t. At each
time t, a set of exactly t experts is available (each expert has started at i P rr1, tss). The optimal expert
is the one which has started exactly at t � τrts. It is the expert which gives the best description of the
environment.

Tracking the optimal expert Before the decision step, Global-STS-BA characterizes each arm k
by aggregating all the contributions of the available experts. To do well, Global-STS-BA needs to
highlight the contribution of the optimal expert because of its optimal description of the environment.
This task is called the track of the optimal expert.

The estimation of the expert distribution (expert weight) is built according to the instantaneous gain of
each expert. This gain takes into account the history of past rewards Dt�1. When a switch occurs, the
instantaneous gains of all experts fall down because of their obsolete estimation giving the advantage
to the expert newly created which will become the optimal expert during the next rounds.
Let us consider a GS-MAB of three arms observing two change points at time t � 25 and t � 49.
Figure B.1 shows the behavior of the expert gain and the expert weight when a switch occurs. It
should be noted that the experts are indexed by their starting time i.e. the most recent expert is the
one with highest index and inversely.
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(a) Tracking the optimal expert during the first switch

(b) Tracking the optimal expert during the second switch

Discussions

• Just before the change point, the optimal expert (index = 1 for the first switch and index
= 25 for the second one) is given the highest weight. The lower the index, the higher the
expert gain. This behavior is expected as much as the higher the number of the observations
the higher the expert gain.
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• When the switch occurs, all the experts created before the change point see their gains
dropping sharply because of the abrupt change of the environment i.e. the instantaneous
gain doesn’t match anymore with the current environment, except the expert newly created
which is given a gain based on the prior of a Thompson Sampling

�
α0

α0�β0

	
.

• Just after the change point, the new optimal expert see its weight starting to grow up while
the weight of the previous optimal expert starts to fall down.

• Largely after the change point, the optimal expert is given the highest weight, because of its
well fit of the current environment. This is corresponding to the expected behavior of the
Global-STS-BA: the optimal expert is well tracked.

B.2 Behavior of Global-STS-BA with respect to the memory size

Regarding the implementation of the Global-STS-BA, we should notice that memory space and time
requirements of the experts inference model grow linearly at each time step because of the creation of
a new expert. This makes the size of the support set of the expert distribution twut increasing by one.
Thus, for computational reasons, we propose to restrict the number of experts by fixing a maximum
memory size M . So, at each round, after launching the inference model, we delete the worst expert
fmint � arg mini wi,t. In all the experiments, we consider a GS-MAB of three arms. Changes occur
at each 1000 rounds. We variate the memory size from M � 15 to M � 3000. Experiments are run
100 times.

Figure 3: Behavior with respect to the switching rate ρ. For a not very poor memory size value
(M ¥ 50), the performances of the Global-STS-BA remains stable.

B.3 Behavior of Global-STS-BA with respect to the switching rate ρ

We should also notice that the inference model of the
experts needs the knowledge of the true switching rate
(ρtrue). In real life, this value is unknow to the agent.
[16] has proposed to learn the switching rate from the
data via a gradient descent. This method appears to not
perform particularly well if the switching rate has to
be adapted at every time step. Figure B.3 shows the
behavior of the Global-STS-BA for different values of
the switching rate.

Discussions The performances of the Global-STS-BA
remains stable even if the switching rate is quite far from
the true one.
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Algorithm 4 Per-Arm Switching Thompson Sampling with Bayesian Aggregation
1: procedure PER-ARM-STS-BA(K, T, α0, β0, ρ)
2: tÐ 1, and @k P K wt,1,k Ð 1, αk,1,t Ð α0, βk,1,t Ð β0 � Initializations
3: for t ¤ T do � Interaction with environment
4: kt Ð CHOOSEARM ptwu

t
, tαu

t
, tβu

t
q

5: xkt Ð PLAYARMpktq � Bernoulli trial
6: twut�1 Ð UPDATEEXPERTWEIGHT ptwut , tαukt,t , tβukt,t , xkt , ρq

7: tαut�1 , tβut�1 Ð UPDATEARMMODELptαut , tβut , xkt , ktq

8:
9: procedure CHOOSEARM(twut , tαut , tβut)

10: @ k P K @ i P rr1, tss θk,i,t Ð Beta pαk,i,t, βk,i,tq
11: return arg maxk

°
iPrr1,tss

wt,i,k°
jPrr1,tss wt,j,k

θk,i,t � Bayesian aggregation

12:
13: procedure UPDATEEXPERTWEIGHT(twut , tαukt,t , tβukt,t , xkt , ρ)

14: lt,i Ð �xkt log
�

αkt,t,i
αkt,t,i�βkt,t,i

	
� p1 � xktq log

�
βkt,t,i

αkt,t,i�βkt,t,i

	
@ i P rr1, tss

15: wt�1,i,kt Ð p1 � ρqwt,i,kt exp p�lt,iq @ i P rr1, tss � Increasing the size of expert fi,t,kt
16: wt�1,t�1,kt Ð ρ

°
i wt,i,kt exp p�lt,iq � Creating new expert for arm kt starting at t� 1

17: wt�1,i,k Ð p1 � ρqwt,i,k@ i P rr1, tss and @ k � kt � Increasing the size of expert fi,t,k
18: wt�1,t�1,k Ð ρ

°
i wt,i,k @ k � kt � Creating new expert for arm k starting at t� 1

19: return twut�1

20:
21: procedure UPDATEARMMODEL(tαut , tβut , xkt , kt)
22: αkt,t�1,i Ð αkt,i,t � 1 pxkt � 1q @ i P rr1, tss
23: βkt,t�1,i Ð βkt,i,t � 1 pxkt � 0q @ i P rr1, tss
24: αk,t�1,t�1 Ð α0, βk,t�1,t�1 Ð β0 @ k P K � Initializing new expert
25: return tαut�1 , tβut�1
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