
Batched Large-scale Bayesian Optimization in
High-dimensional Spaces

Zi Wang † Clement Gehring † Pushmeet Kohli ‡ Stefanie Jegelka †

†MIT CSAIL {ziw,gehring,stefje}@csail.mit.edu ‡ DeepMind pushmeet@google.com

Abstract

Bayesian optimization (BO) has become an effective approach for black-box
function optimization problems. Despite recent successes of applying BO to high-
dimensional problems, it is extremely challenging to use these methods for large
scale observations, because of the expensive computations involving Gaussian
process (GP) posterior inference and the inference of the function structures. We
propose ensemble Bayesian optimization (EBO) to address three current challenges
in BO simultaneously: (1) large-scale observations; (2) high dimensional input
spaces; and (3) selections of batch queries that balance quality and diversity. The
key idea of EBO is to operate on an ensemble of additive Gaussian process models,
each of which possesses a randomized strategy to divide and conquer. We show
unprecedented, previously impossible results of scaling up BO to tens of thousands
of observations within minutes of computation.

1 Introduction

Global optimization of black-box and non-convex functions is an important component of modern
machine learning and has wide applications in many areas of science and engineering [2, 19, 6]. In
the past decade, Bayesian optimization has become a popular approach for optimizing black-box
non-convex functions with assumptions usually expressed by a Gaussian process (GP) prior. Recent
work on Bayesian optimization addresses better query strategies [13, 17, 21, 8, 10, 22], techniques
for batch queries [3, 4, 7, 12], algorithms for high dimensional problems [24, 5, 15, 11, 23], and
alternative models for scalability [20, 14, 16]. Despite these successes, Bayesian optimization is
typically limited to merely a few thousand observations [14]. Yet, reliable search and estimation for
complex functions in very high-dimensional spaces may well require more evaluations. With the
increasing availability of parallel computing resources, large number of function evaluations are also
possible if the underlying approach can leverage the parallelism.

In this paper, we propose ensemble Bayesian optimization (EBO), a global optimization method
targeted to high dimensional, large scale parameter search problems whose queries are parallelizable.
EBO relies on two main ideas that are implemented at multiple levels: (1) we use efficient partition-
based function approximators (across both data and features) that simplify and accelerate search and
optimization; (2) we enhance the expressive power of these approximators by using ensembles and a
stochastic approach. We maintain an evolving (posterior) distribution over the (infinite) ensemble and,
in each iteration, draw one member to perform search and estimation. The model estimation and query
selection can be parallelized across blocks in the Gram matrix sampled by a Mondrian process. Empiri-
cally, we demonstrate the ability of EBO to handle sample-intensive hard optimization problems by ap-
plying it to a simulated control problem with tens of thousands of observations. Our code will be pub-
licly available at https://github.com/zi-w/Ensemble-Bayesian-Optimization.

2 Notations

Consider a simple but high-dimensional search space X = [0, R]D ⊆ RD. We aim to find a
maximizer x∗ ∈ arg maxx∈X f(x) of a black-box function f : X → R. Gaussian processes

https://github.com/zi-w/Ensemble-Bayesian-Optimization

(GPs) are popular priors for modeling the function f in Bayesian optimization. We denote a
Gaussian process as GP(µ, κ) where µ(·) is the mean function and κ(·, ·) is the covariance (kernel)
function. Assume f is a function sampled from GP(0, κ). Given observations Dn = {(xt, yt)}nt=1
where yt ∼ N (f(xt), σ), we denote the posterior mean function to be µn(·) and the posterior
variance function to be σ2

n(·). The log data likelihood for Dn is given by log p(Dn) = − 1
2y

T
n(Kn +

σ2I)−1yn − 1
2 log |Kn + σ2I| − n

2 log 2π, where Kn = [κ(xi,xj)]xi,xj∈Dn
[18].

To reduce the complexity of the vanilla GP, we assume a latent decomposition of the input dimensions
[D] = {1, . . . , D} into disjoint subspaces, namely,

⋃M
m=1Am = [D] and Ai ∩Aj = ∅ for all i 6= j,

i, j ∈ [M]. As a result, the function f decomposes as f(x) =
∑

m∈[M] fm(xAm) [11]. If each
component fm is drawn independently from GP(µ(m), κ(m)) for all m ∈ [M], the resulting f will
also be a sample from an additive GP: f ∼ GP(µ, κ), with µ(x) =

∑
m∈[M] µm(xAm), κ(x, x′) =∑

m∈[M] κ
(m)(xAm , x′

Am).

3 Ensemble Bayesian Optimization

We outline our approach, Ensemble Bayesian optimization (EBO), in Alg.1. At a high level, EBO
uses a (stochastic) series of Mondrian trees to partition the input space, learn the kernel parameters of
a GP locally, and aggregate these parameters. Our forest hence spans across BO iterations.

In the t-th iteration of EBO in Alg. 1, we use a Mondrian process to randomly partition the search
space into J parts (line 4), where J can be dependent on the size of the observations Dt−1. For the
j-th partition, we have a subset Dj

t−1 of observations. From those observations, we learn a local
GP with random tile coding and additive structure, via Gibbs sampling (line 6). For conciseness,
we refer to such GPs as TileGPs. The probabilistic tile coding can be replaced by a Mondrian grid
that approximates a Laplace kernel [1]. Once a TileGP is learned locally, we can run BO with
the acquisition function η in each partition to generate a candidate set of points, and, from those,
select a batch that is both informative (high-quality) and diverse (line 14). In this paper, we use an
acquisition function from [22], and FILTER selects the batch by maximizing a surrogate function
ξ(X) = log detKX +

∑B
b=1 η(xb) where X = {xb}Bb=1.

Algorithm 1 Ensemble Bayesian Optimization (EBO)
1: function EBO (f,D0)
2: Initialize z, k
3: for t = 1, · · · , T do
4: {Xj}Jj=1 ←MONDRIAN([0, R]D, z, k, J)
5: parfor j = 1, · · · , J do
6: zj , kj ← GIBBSSAMPLING(z, k | Dj

t−1)

7: ηjt−1(·)←ACQUISITION (Dj
t−1, z

j , kj)
8: {Am}Mm=1 ← DECOMPOSITION(zj)
9: for m = 1, · · · ,M do

10: xAm
tj ← argmax

x∈XAm
j

ηjt−1(x)

11: end for
12: end parfor
13: z ← SYNC({zj}Jj=1), k ← SYNC({kj}Jj=1)

14: {xtb}Bb=1 ← FILTER ({xtj}Jj=1 | z, k)
15: parfor b = 1, · · · , B do
16: ytb ← f(xtb)
17: end parfor
18: Dt ← Dt−1 ∪ {xtb, ytb}Bb=1

19: end for
20: end function

Since, in each iteration, we draw an input space partition and update the kernel width and the additive
structure, the algorithm may be viewed as implicitly and stochastically running BO on an ensemble
of GP models. In the appendix, we describe the procedures of Alg. 1 in detail and show an illustration
how EBO optimizes a 2D function. In the following, we focus on one important component of EBO:
TileGP.

2

3.1 Learning a local TileGP via Gibbs sampling

We use the acronym “TileGP” to denote the Gaussian process model that uses additive kernels, with
each component represented by tilings. For each Mondrian partition Xj = [lj1, h

j
1]× · · · × [ljD, h

j
D],

we use a TileGP to model the function f locally. We show the graphical model in Fig. 3.1 with fixed
hyper-parameters α, β0, β1. The main difference to the additive GP model used in [23] is that TileGP
constructs a hierarchical model for the random features (and hence, the kernels), while [23] do not
consider the kernel parameters to be part of the random variables. To generate a TileGP, we first
draw the mixing proportions θ ∼ DIR(α). Then for each dimension d = 1, · · · , D, we draw additive
decomposition zd ∼ MULTI(θ) and a Poisson rate parameter λd ∼ GAMMA(β0, β1). For each tiling
layer i = 1, · · · , L, the number of cuts kdi is generated by a Poisson process parameterized by λd.
On the i-th layer of the tilings, we have two options to place the cuts: if we use tile coding, it samples

the offset δ from a uniform distribution U [0,
hj
d−l

j
d

kdi
] and places the cuts uniformly starting at δ + ljd;

if we use Mondrian grids, it samples kdi cut locations uniformly randomly from [ljd, h
j
d].

We can use Gibbs sampling to efficiently learn the cut parameter k and decomposition parameter
z by marginalizing out λ and θ. Notice that both k and z take discrete values; hence, unlike other
continuous GP parameterizations, we only need to sample discrete variables for Gibbs sampling.
where |kd| =

∑L
i=1 kdi. Hence, we only need to sample k and z when learning the hyperparameters

of the TileGP kernel. For each dimension d, we sample the group assignment zd according to

p(zd = m | Dt−1, k, z¬d;α) ∝ p(Dt−1 | z, k)p(zd | z¬d) ∝ p(Dt−1 | z, k)(|Am|+ αm). (3.1)

We sample the number of cuts kdi for each dimension d and each layer i from the posterior

p(kdi | Dt−1, k¬di, z;β) ∝ p(Dt−1 | z, k)p(kdi | k¬di) ∝
p(Dn | z, k)Γ(β1 + |kd|)

(β0 + L)kdikdi!
. (3.2)

If distributed computing is available, each Mondrian partition of the input space is assigned a worker
to manage all the computations within this partition. On each worker, we use the above Gibbs
sampling method to learn the additive structure and kernel bandwidth jointly. Conditioned on the
observations associated with the partition on the worker, we use the learned posterior TileGP to select
the most promising input point in this partition, and eventually send this candidate input point back
to the main process together with the learned decomposition parameter z and the cut parameter k.

β λ k

f

z θ α

y x

DL

D

Figure 1: The graphical model for TileGP, a GP with additive and tile kernel partitioning structure.
The parameter λ controls the rate for the number of cuts k of the tilings (inverse of the kernel
bandwidth); the parameter z controls the additive decomposition of the input feature space.

3.2 Efficient data likelihood computation and parameter synchronization

For the random features, we use tile coding due to its sparsity and efficiency. Since non-zero features
can be found and computed by binning, the computational cost for encoding a data point scales
linearly with dimensions and number of layers. The resulting representation is sparse and convenient
to use. Additionally, the number of non-zero features is quite small, which allows us to efficiently
compute a sparse Cholesky decomposition of the inner product (Gram matrix) or the outer product of
the data. This allows us to efficiently compute the data likelihoods.

In each iteration t, after the batch workers return the learned decomposition indicator zb and the
number of tiles kb, b ∈ [B], we synchronize these two parameters (line 13 of Alg. 1). For the number
of tiles k, we set kd to be the rounded mean of {kbd}Bb=1 for each dimension d ∈ [D]. For the
decomposition indicator, we use correlation clustering to cluster the input dimensions.

3

4 Experiments

We empirically verify the scalability of EBO and the effectiveness of random Mondrian partitions.

10 100 240 500
Num ber of Cores

1

5

10

15

20

25

S
p

e
e

d
-u

p
 o

v
e

r
1

0
 C

o
re

s

0 100 200 300 400 500
Observat ion size (x100)

0

20

40

60

80

100

120

140

160

G
ib

b
s
 s

a
m

p
li

n
g

 t
im

e
 (

m
in

u
te

s
)

SKL

EBO

We stopped SKL after 2 hours

EBO average runtime = 61 seconds

(a) (b)

Figure 2: (a) Timing for the Gibbs sampler of EBO and SKL.
EBO is significantly faster than SKL when the observation
sizeN is relatively large. (b) Speed-up of EBO with 100, 240,
500 cores over EBO with 10 cores on 30,000 observations.
Running EBO with 240 cores is almost 20 times faster than
with 10 cores.

Scalability We compare EBO with
a recent, state-of-the-art additive ker-
nel learning algorithm, Structural Ker-
nel Learning (SKL) [23]. EBO can
make use of parallel resources both for
Gibbs sampling and BO query selec-
tions, while SKL can only parallelize
query selections but not sampling. Be-
cause the kernel learning part is the
computationally dominating factor of
large scale BO, we compare the time
each method needs to run 10 iterations
of Gibbs sampling with 100 to 50000
observations in 20 dimensions. We
show the timing results for the Gibbs
samplers in Fig. 2(a), where EBO uses
240 cores via the Batch Service of Mi-
crosoft Azure. For EBO, the maximum number of Mondrian partitions is set to be 1000 and the
minimum number of data points in each Mondrian partition is 100. Due to a time limit we imposed,
we did not finish SKL for more than 1500 observations. EBO runs more than 390 times faster than
SKL when the observation size is 1500. Comparing the quality of learned parameter z for the additive
structure, SKL has a Rand Index of 96.3% and EBO has a Rand Index of 96.8%, which are similar. In
Fig. 2(b), we show speed-ups for different number of cores. EBO with 500 cores is not significantly
faster than with 240 cores because EBO runs synchronized parallelization, whose runtime is decided
by the slowest core. It is often the case that most of the cores have finished while the program is
waiting for the slowest 1 or 2 cores to finish.

0 10 20 30 40 50 60

Tim e (m inutes)

0

1

2

3

4

5

6

7

R
e

g
re

t

BO-SVI

BO-Add-SVI

PBO

EBO

Figure 3: Averaged results of the
regret of BO-SVI, BO-Add-SVI,
PBO and EBO on functions drawn
from a 50D additive GP. Using an
additive GP within SVI (BO-Add-
SVI) significantly improves over
the full kernel (BO-SVI). In gen-
eral, EBO finds a good point faster
than the other methods.

Effectiveness of Mondrian ensembles We verify the effec-
tiveness of using ensemble models for BO on 4 functions
randomly sampled from a 50-dimensional GP with an addi-
tive Laplace kernel. The hyperparameter of the Laplace ker-
nel is known. In each iteration, each algorithm evaluates a
batch of parameters of size B in parallel. We denote r̃t =
maxx∈X f(x) − maxb∈[B] f(xt,b) as the immediate regret ob-
tained by the batch at iteration t, and rT = mint≤T r̃t as the
regret, which captures the minimum gap between the best point
found and the global optimum of the black-box function f .

We compare BO using SVI [9] (BO-SVI), BO using SVI with an
additive GP (BO-Add-SVI) and a distributed version of BO with
a fixed partition (PBO) against EBO with a randomly sampled
partition in each iteration. PBO has the same 1000 Mondrian
partitions in all the iterations while EBO can have at most 1000
Mondrian partitions. BO-SVI uses a Laplace isotropic kernel
without any additive structure, while BO-Add-SVI, PBO, EBO
all use the known prior. More detailed experimental settings can
be found in the appendix. Our experimental results in Fig. 3
shows that EBO is able to find a good point much faster than
BO-SVI and BO-Add-SVI; and, randomization and the ensemble
of partitions matters: EBO is much better than PBO.

5 Conclusion

We propose a novel framework, ensemble Bayesian optimization, to tackle the scaling problem of
Bayesian optimization. To achieve this, we proposed a new GP model based on tile coding and
additive structure. Our empirical results showed that EBO is able to explore the space smartly and
find better solutions than its competitors.

4

References
[1] Matej Balog and Yee Whye Teh. The mondrian process for machine learning. arXiv preprint

arXiv:1507.05181, 2015.

[2] Roberto Calandra. Bayesian Modeling for Optimization and Control in Robotics. PhD thesis, Technische
Universität, 2017.

[3] Emile Contal, David Buffoni, Alexandre Robicquet, and Nicolas Vayatis. Parallel gaussian process
optimization with upper confidence bound and pure exploration. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 225–240. Springer, 2013.

[4] Thomas Desautels, Andreas Krause, and Joel W Burdick. Parallelizing exploration-exploitation tradeoffs
in Gaussian process bandit optimization. Journal of Machine Learning Research, 2014.

[5] Josip Djolonga, Andreas Krause, and Volkan Cevher. High-dimensional Gaussian process bandits. In
Advances in Neural Information Processing Systems (NIPS), 2013.

[6] Javier González, Joseph Longworth, David C James, and Neil D Lawrence. Bayesian optimization for
synthetic gene design. arXiv preprint arXiv:1505.01627, 2015.

[7] Javier González, Zhenwen Dai, Philipp Hennig, and Neil D Lawrence. Batch bayesian optimization via
local penalization. International Conference on Artificial Intelligence and Statistics (AISTATS), 2016.

[8] Philipp Hennig and Christian J Schuler. Entropy search for information-efficient global optimization.
Journal of Machine Learning Research, 13:1809–1837, 2012.

[9] James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaussian processes for big data. arXiv preprint
arXiv:1309.6835, 2013.

[10] José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive entropy search
for efficient global optimization of black-box functions. In Advances in Neural Information Processing
Systems (NIPS), 2014.

[11] Kirthevasan Kandasamy, Jeff Schneider, and Barnabas Poczos. High dimensional Bayesian optimisation
and bandits via additive models. In International Conference on Machine Learning (ICML), 2015.

[12] Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabas Poczos. Asynchronous
parallel bayesian optimisation via thompson sampling. arXiv preprint arXiv:1705.09236, 2017.

[13] Harold J Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in the
presence of noise. Journal of Fluids Engineering, 86(1):97–106, 1964.

[14] Balaji Lakshminarayanan, Daniel M Roy, and Yee Whye Teh. Mondrian forests for large-scale regression
when uncertainty matters. In International Conference on Artificial Intelligence and Statistics (AISTATS),
2016.

[15] Chun-Liang Li, Kirthevasan Kandasamy, Barnabás Póczos, and Jeff Schneider. High dimensional bayesian
optimization via restricted projection pursuit models. In International Conference on Artificial Intelligence
and Statistics (AISTATS), 2016.

[16] Mitchell McIntire, Daniel Ratner, and Stefano Ermon. Sparse Gaussian processes for bayesian optimization.
In Uncertainty in Artificial Intelligence (UAI), 2016.

[17] J. Moc̆kus. On Bayesian methods for seeking the extremum. In Optimization Techniques IFIP Technical
Conference, 1974.

[18] Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine learning. The MIT
Press, 2006.

[19] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine learning
algorithms. In Advances in Neural Information Processing Systems (NIPS), 2012.

[20] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram, Mostofa
Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep neural networks. In
International Conference on Machine Learning, 2015.

[21] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias W Seeger. Information-theoretic regret
bounds for gaussian process optimization in the bandit setting. IEEE Transactions on Information Theory,
2012.

5

[22] Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient bayesian optimization. In Interna-
tional Conference on Machine Learning (ICML), 2017.

[23] Zi Wang, Chengtao Li, Stefanie Jegelka, and Pushmeet Kohli. Batched high-dimensional bayesian
optimization via structural kernel learning. In International Conference on Machine Learning (ICML),
2017.

[24] Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando de Feitas. Bayesian optimization
in a billion dimensions via random embeddings. Journal of Artificial Intelligence Research, 55:361–387,
2016.

6

	Introduction
	Notations
	Ensemble Bayesian Optimization
	Learning a local TileGP via Gibbs sampling
	Efficient data likelihood computation and parameter synchronization

	Experiments
	Conclusion

