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Abstract

We propose a Bayesian optimization algorithm to autonomously manage situations
where outlier data may be encountered. These outliers can pollute the surrogate
model, reducing the efficiency of the optimization. Our algorithm uses robust
regression (a Gaussian process with Student-t likelihood) to classify data points as
outliers and diminish their effect by excluding them from consideration. We present
an empirical evaluation of optimization methods showing that our method is able
to overcome the presence of outliers. Furthermore, we also show that our method
compares favorably to Bayesian optimization with robust surrogate models on
optimization benchmarks and machine learning hyperparameter tuning problems.

1 Introduction

In recent years, Bayesian optimization [20] has emerged as the de facto method for problems which
demand sample efficiency, i.e., each sample or trial requires a great investment of time or resources.
Bayesian optimization (BO) provides a derivative-free strategy for executing this black-box optimiza-
tion through the use of a probabilistic surrogate model which describes the relationship between
suggested parameter configurations and their associated value or performance. The strength of this
model comes from its comprehensive “memory” of the progress of the optimization [12], allowing
Bayesian optimization to often outperform other black-box optimization methods by effectively
utilizing all the information from previously observed results.

In the presence of faulty or outlier data, this memory can actually cause problems and slow (or even
prevent) convergence because outliers are never forgotten. Other methods, such as gradient descent or
evolutionary algorithms, have an effectively short memory making them naturally resilient to outlier
data. For Bayesian optimization methods to manage outliers, steps must be taken to either alter the
construction of the surrogate model or its interpretation.

Outlier management and detection is an intensive area of research in many disciplines because of
the prevalence of outliers in practical circumstances. Outliers are often problem dependent, and
are therefore defined and interpreted differently across different applications. In the context of
hyperparameter tuning and design of computer experiments, outliers might appear from random
bugs, I/O or networking errors, convergence issues for certain sets of parameters, etc. In the case
of physical experiments, human implementation mistakes (e.g., equipment calibration) or external
factors (e.g., unexpected seismic activity) could unpredictably impact experimental results.

The methods employed to deal with outliers can be classified in two areas: robustness of inference
to outliers and outlier diagnostics [17]. Robust inference strategies consist of developing models
which are often more computationally expensive and less accurate but can incorporate outliers
without allowing them to dominate non-outlier data. Outlier diagnostics methods generally consist of
preprocessing data through statistical analysis to classify outliers and exclude them from a subsequent
model built with standard (non-robust) methods.

In this article, we propose a strategy for managing outliers during Bayesian optimization using ideas
developed in the regression community. Periodically, during the optimization, we use a Gaussian
Process (GP) with the Student-t likelihood to diagnose outliers. All previously observed results are
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then classified as acceptable or outliers and only the acceptable data is analyzed through the standard
Bayesian optimization process. This process is depicted in Figure 1.

Figure 1: A depiction of the filtering process. Left: The basic GP surrogate model with biased
estimates and high variance. Center: The Student-t likelihood allowing for identification of outliers.
Right: The GP model fit after excluding the outliers.

Our experimental results show that our two-step method for outlier classification is sufficient for
enabling Bayesian optimization in the presence of outliers. Furthermore, our results also show that
this method is preferable to simply using a robust regression model as was previously suggested (e.g.,
Shah et al. [19]). To the authors’ knowledge, this is the first work on Bayesian optimization with
experimental results addressing the presence of outliers.

2 Bayesian Optimization with Outliers

To motivate our strategy for conducting Bayesian optimization in the presence of outliers, we turn to
the field of robust regression, i.e., designing surrogate models that are robust to outliers. The simplest
GP surrogate model (described in Appendix A) assumes that observed function values take the form
Y
x

= f(x) + ✏ where f is the function to be minimized and ✏ ⇠ N (0,�2
n) for some fixed �n > 0.

Outliers can corrupt such surrogate models because they do not follow this assumed distribution. In
particular, the Gaussian assumption for ✏ cannot properly fit the outliers without introducing bias in
the function estimate. It has been proven that predictions from the model will be increasingly biased
proportional to the magnitude of deviation in an outlier [14].

Choosing a heavy-tailed distribution for the observation noise ✏, such as the Laplace, the hyperbolic
secant, or the Student-t likelihoods, can help produce models which are robust to outliers. Natural
robust replacements for the standard GP model include: the use of the Student-t distribution to model
the observation noise ✏ [27]; or the use of a multivariate t-distribution to jointly model observed data
(rather than the multivariate normal distribution used in a GP) [19]. More information is provided in
Appendix B. In practice, we found these strategies to be computationally demanding and numerically
unstable when computing expected improvement (EI) [11] which led us to develop our method
(encapsulated in Algorithm 1).

Algorithm 1 BO with outliers Input: Total budget T , rejection threshold ↵

1: Initial design of p points (e.g.: LHS): X  x1:p y y1:p
2: for t = p+ 1 . . . T do
3: if schedule(t) then
4: ⇥

t

 fitGPwithTlik(X,y)
5: Xin,yin  filterOutliers(X,y,⇥

t

,↵)

6: if length(yin)/length(y) < 0.5 or not schedule(t) then Xin  X, yin  y

7: ⇥

g

 fitGPwithGlik(Xin,yin)

8: xt = argmax

x

EI(x|Xin,yin,⇥g

)

9: yt  f(xt) X add(xt) y add(yt)

We still fit a robust model with the Student-t likelihood, represented in the algorithm as
fitGPwithTlik. Then, we use this robust model to identify and remove outliers with the function
filterOutliers. To accomplish this, we define an ↵ term such that points with values less likely
than ↵ (as determined by the robust model) are classified as outliers. Periodically, we conduct this
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filtering on all the observed data and exclude observed results which are sufficiently unlikely. After
the filtering excludes outliers from consideration, the remaining acceptable data is passed through the
standard Bayesian optimization process (described in Appendix A) to generate a next suggested xt.

The schedule function manages the frequency with which we reclassify outliers. In our experimen-
tation, we found that a fairly aggressive (high) ↵ = 0.05 threshold worked well because we reclassify
all observed results as either outliers or acceptable. Thus, no observation is permanently rejected. We
also monitor the ratio of acceptable points length(yin) / length(y); if more than half of the points
are excluded in filterOutliers, we do not filter and try again in a subsequent iteration.

Finally, for the schedule, we have used an initial delay of 10 iterations before trying to classify
any outliers and the filtering was performed every 2 iterations. These decisions must be made by
the user and will impact the balance between computation cost of the optimization process (because
of the cost of fitGPwithTlik) and the necessary budget T (because of the stagnation observed
when outliers are not filtered). More detail is provided in Appendix C. Our proposed method is more
efficient than the natural robust replacements described above because the robust model is fit less
frequently (according to the schedule) and because the standard GP model (whose posterior has a
closed form) is used for the EI maximization.

3 Results

We evaluated our method on a set of numerical benchmarks and realistic hyperparameter optimization
problems involving outliers. In all experiments, we have compared our method (Algorithm 1) to a
Baseline, standard Bayesian optimization with a Gaussian ✏ distribution (described in more detail in
Appendix A). The baseline is equivalent to Algorithm 1 run with schedule(t) ⌘ False, i.e., never
test for outliers. We also compare to standard Bayesian optimization applied with No outliers. The
percentile value ↵ = .05, defined in Section 2, was used for filtering outliers in our method. Our
covariance kernel is the C4 Matérn.

3.1 Numerical benchmarks

Figure 2: The median and interquartile range of 20 trials is
plotted with each BO method on 8D random functions. left:
10% outliers. right: 20% outliers. top: Matérn generated.
bottom: rational quadratic generated.

To construct numerical benchmarks
we used the methodology from Hen-
ning and Schuler [5] to generate a
set of 8D random functions from two
types of Gaussian processes. We
tested samples from a GP with the
same C4 Matérn kernel as used in the
surrogate model, as well as from a
GP with a rational quadratic kernel.
Outliers were i.i.d. sampled from a
uniform distribution youtlier ⇠ U(1, 2).
Results are shown in Figure 2. We
also compared to the natural robust
replacements described in Section 2:
the BO with t-likelihood and the BO
with t-process method.

Our method outperforms both robust
regression methods and it is able to
reach performance comparable to the
No outliers scenarios. We also see that
failing to consider the outliers has a devastating effect, resulting in the optimization stagnating for the
Baseline. Between the two robust regression methods, there appears to be no clear winner.

3.2 Hyperparameter tuning

Besides the previously mentioned errors and failures that might appear, we have found that hyperpa-
rameter tuning problems have some intrinsic sources of outliers. For example, early stopping during
training might be used to guard against overfitting and reduce computational cost by reallocating
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resources based on the performance at early stages [8]. However, random initialization of variables
resulting in very different behaviors at early stages [24]. Therefore, early stopping may result in some
configurations having an outlier value (based on the random initialization rather than the expected
hyperparameter performance).

Figure 3: Median and interquartile range of each method. top: Optimization of the variational
autoencoder on the MNIST dataset. bottom: Optimization of the feed-forward neural network on the
Boston housing dataset. left: No outliers (thus the “Baseline” coincides with the “No outliers case”).
center: 10% outliers. right: 20% outliers.

Variational autoencoder (VAE) In this experiment we train a VAE (a generative method based on
neural networks) on the MNIST dataset [4]. We tune the number of nodes in the hidden layer and
learning rate, learning rate decay, and ✏ constant for the Adam optimizer. We simulated outliers as
I/O failures where the VAE is trained only on a subset of the data (randomly generated between 100
and 1000 images). The results are shown in Figure 3. In the case without externally induced outliers
and a small level of simulated outliers (10%), the upper quantile shows our method is more robust
than the baseline, reinforcing the theory that there are already outliers present. For a high level of
outliers (20%) the performance drops, suggesting that the number of simulated outliers in addition
with the existing intrinsic outliers reaches a point near the limit of robustness.

Feedforward network We apply gradient descent to train a single layer feedforward neural network
on the Boston housing dataset (inspired by Wang et al. [28]). The 4 hyperparameters we tuned were
the number of nodes in the hidden layer, learning rate, learning rate decay, and ⇢, the parameter that
controls the exponential decay rate from RMSprop. Figure 3 shows the results of the optimization for
10% outliers. An outlier in this optimization consisted of running the neural network 5 epochs, rather
than the standard 20 epochs. In the case with no simulated outliers, the performance is no better
than the baseline method. When simulated outliers are added, the behavior is similar to the VAE,
consistently providing a clear benefit in comparison to the baseline.

4 Conclusions

We have presented a method to extend Bayesian optimization in the presence of outliers. The method
combines robust regression with a Student-t likelihood on a GP, and outlier analysis to classify
inlier and outlier data points. We have extensively evaluated the proposed method on both synthetic
benchmarks and realistic applications showing that our method is suitable for practical Bayesian
optimization in the presence of outliers. Furthermore, we have shown how our method does not
incur negative outcomes in situations without induced outliers. This highlights the potential value
of this approach even in supposedly controlled environments and lab conditions. Finally, we have
experimentally demonstrated that Bayesian optimization with a robust surrogate model designed to
accommodate outliers produces inferior results.
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