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Abstract

Bayesian optimization is a sample-efficient approach to solving global optimiza-
tion problems. Along with a surrogate model, this approach relies on theoreti-
cally motivated value heuristics (acquisition functions) to guide the search process.
Maximizing acquisition functions yields the best performance; unfortunately, this
ideal is difficult to achieve since optimizing acquisition functions per se is fre-
quently non-trivial. This statement is especially true in the parallel setting, where
acquisition functions are routinely non-convex, high-dimensional, and intractable.
Here, we demonstrate how many popular acquisition functions can be formulated
as Gaussian integrals amenable to the reparameterization trick [14, 17] and, ensu-
ingly, gradient-based optimization. Further, we use this reparameterized represen-
tation to derive an efficient Monte Carlo estimator for the upper confidence bound
acquisition function [19] in the context of parallel selection.

1 Introduction

In Bayesian optimization (BO), acquisition functions H , with few exceptions, amount to integrals
defined in terms of a belief p over the unknown outcomes y = {y1,… , yq} revealed when evaluating
a black-box function f at corresponding input locations X = {x1,… , xq}. This formulation natu-
rally occurs as part of a Bayesian approach whereby we would like to assess how valuable different
queries X are to the optimization process by accounting for all conceivable realizations of y = f (X).
Denoting by ℎ the function used to convey the value-added for observing a given realization, this
paradigm gives rise to acquisition functions defined as

H(X;�) = ∫
ℎ(y;�)p(y|X,)dy , (1)

where integration region  ⊆  represents the set of all possible outcomes y, � any additional
parameters associated with integrand ℎ, and the available prior information.1 Without loss of gen-
erality, we express acquisition functions as q-dimensional integrals, where q denotes the total number
of queries with unknown outcomes after each decision. For pool-size q = 1, we recover strictly se-
quential decision-making rules; whereas, for q > 1, we obtain strategies for parallel selection.2 As
an exception to this rule, non-myopic acquisition functions, which assign value by further consider-
ing how different realizations of (X, y) impact our broader understanding of black-box f , generally
correspond to higher-dimensional integrals. Specifically, non-myopic instances of the above formu-
lation typically recurse, with the integrand ℎ amounting to an additional integral of the form (1).
While in a minority of cases closed-form solutions exist, these integrals are generally intractable and
therefore difficult to optimize.

1Henceforth, we omit explicit reference to prior information .
2To avoid confusion when discussing SGD, we reserve the term batch-size for description of minibatches.



Examples of reparameterizable acquisition functions
Acquisition function Parameters Integrand ℎ Reparameterization

Expected Improvement (EI) �,�; � max (0,max (y) − �) max (0,max (� + Lz) − �)
Probability of Improvement (PI) �,�; �, � 1

− (max (y) − �) �
(

max(�+Lz)−�
�

)

Upper Confidence Bound (UCB) �,�; � max (� + |ỹ − �|) max
(

� +
√

��∕2|Lz|
)

Simple Regret (SR) �,� max (y) max (� + Lz)
Entropy Search (ES) �,�; � 1

+ (y − max (y)) sof tmax
(

�+Lz
�

)

Table 1: Above, we use the following notation: Cholesky factor LL⊤ ≜ �; 1+∕− denotes the right-
/left-continuous Heaviside step function; � the sigmoid nonlinearity; � the improvement threshold;
� the temperature parameter described in Section 2; and, random variables ỹ ∼  (�, ��∕2�).
For Entropy Search, a non-myopic acquisition function, only the innermost integrand (used to
approximate pmax) and its corresponding reparameterization are shown.

For this reason, a variety of methods have been proposed for evaluating intractable acquisition func-
tions. These approaches have ranged from expectation propagation-based approximations of Gaus-
sian probabilities [5, 9, 10] to bespoke approximation strategies [4, 6] to sample-based Monte Carlo
techniques [9, 16, 18].
The special case of parallel Expected Improvement (q-EI) has received considerable attention [3,
7, 18, 20]; however, excepting [20], proposed methods do not scale gracefully in pool-size q. Still
within the context of q-EI and independent of our work, [20] derive results analogous to our own,
but refer to the reparameterization trick (discussed below) as infinitesimal perturbation analysis [8].
In this work, we focus on the most common estimation technique: Monte Carlo integration. De-
spite their generality and myriad other desirable properties, Monte Carlo approaches have consis-
tently been regarded as non-differentiable and, therefore, inefficient in practice given the need to
optimize (1). However, it seems to have been overlooked that sample-based approaches can indeed
be used to estimate gradients, well-known examples of which include stochastic backpropagation
and the reparameterization trick [14, 17]. In the following, we exploit this insight to demonstrate
gradient-based optimization of acquisition functions estimated via Monte Carlo integration.
The reparameterization trick is a way of rewriting functions of random variables that makes their
differentiability w.r.t. the parameters of an underlying distribution transparent. The trick applies
a deterministic mapping � ∶  →  from random variables z ∈  with a parameter-free base
distribution to random variables y ∈  with the target distribution. This change of variables helps
clarify that if ℎ is a differentiable function of y = �(z;�) then, by the chain rule of derivatives
dℎ
d�

= dℎ
d�

d�
d�
, i.e., we can use gradient information to optimize the target distribution’s parameters �.

We now explore the importance of this fact for BO and, in particular, for parallel selection.

2 Reparameterizing acquisition functions

As is arguably the natural way of expressing uncertainty over interrelated values, beliefs p(y|X)
over the q outcomes for pool X are typically defined in terms of a multivariate normal distribution
 (�,�). In the context of the reparameterization trick, the corresponding deterministic mapping
for Gaussian random variables y is �(z;�,�) ≜ � + Lz, where L denotes the Cholesky factor of �,
s.t. LL⊤ = � and z ∼  (0, I). Rewriting (1) as a Gaussian integral and reparameterizing, we have

H(X;�) = ∫

b

a
ℎ(y;�) (y;�,�)dy = ∫

b′

a′
ℎ(� + Lz;�′) (z; 0, I)dz , (2)

where each of the q terms c′i in both a′ and b′ is transformed as c′i = (ci − �i −
∑

j<i Lijzj)∕Lii
and where values in �′ have similarly been mapped to . By taking the gradient of H(X;�) w.r.t.
model-based posterior  (�,�) = (X) and further differentiating through the model to inputs X,
we can perform gradient ascent on acquisition values.3

3Parameters associated with model are not differentiated through and are therefore omitted for clarity.
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Figure 1: Top left: GP-based posterior over 1-dimensional black-box f given three initial obser-
vations (orange dots). Remaining: Response surfaces of various acquisition functions for pool-size
q = 2. From ‘×’ to ‘☆’, paths explored by gradient descent (green) and stochastic gradient descent
(pink) when optimizing the various acquisition functions. Dashed horizontal lines denote axes of
symmetry and large ‘☆’ (yellow) indicate the global maximum of each acquisition function.

When Monte Carlo integrating (2), an unbiased estimate to the acquisition gradients is then
dH(X;�)

dX
≈ 1
n
∑n

k=1

dℎ(yk;�)
dyk

dyk
d(X)

d(X)
dX

, (3)

where, by minor abuse of notation, we have substituted in yk = �(zk;(X)). The availability of
gradient information is especially important for q > 1, both because parallel acquisition functions
are generally intractable and because the dimensionality of the acquisition space scales linearly in q.
Examples of well-known acquisition functions amenable to this treatment are presented in Table 1.
Figure 1 provides a visual example of the corresponding (stochastic) gradient ascent process, for each
of the five acquisition functions shown in the table. Before going further, several points of interest
in Table 1 warrant attention:
1. Parallelizing UCB: To the best of our knowledge, the integral representation of UCB is novel

and leads to the first truly parallel formulation of UCB (q-UCB). Relevantly, using the reparam-
eterization trick greatly simplifies the associated derivation. As with other acquisition functions
discussed here, q-UCB can be efficiently estimated via Monte Carlo and optimized using gradi-
ents. For the complete derivation and related formulae, please refer to Appendix A.

2. Relaxing Heaviside step functions: Both Probability of Improvement (PI) and Entropy Search
(ES) contain Heaviside step functions, whose derivatives are Dirac delta functions. Since these
gradients are zero a.e., we instead propose the use of a sof tmax function with temperature param-
eter �. This combination has the appealing property that the resulting approximation becomes
exact as � → 0, a property recently exploited in [11, 15]. To the extent that this soft approxima-
tion introduces an additional source of error, we argue that this downside is largely outweighed by
the availability of informative gradients, which enable us to greatly reduce optimization error [2].

3. Differentiating though themax(): Many acquisition functions, such as EI, use the max operator.
While not technically differentiable, this operator is known to be subdifferentiable and affords
well-behaved (sub)gradients.
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Figure 2: Left: For equivalent runtimes, best average case performance of each acquisition function
given 256 evaluations of 8-dimensional samples from a GP prior with known hyperparameters when
choosing pool-size q = 8 queries in parallel. Remaining: Performance of individual acquisition
functions for different optimizers thereof.

3 Experiments

As baselines, we compared gradient-based approaches to optimizing acquisition functions with Ran-
dom Search [1] and Dividing Rectangles [12] based ones. For stochastic gradient descent (SGD),
we experimented with several off-the-shelf optimizers; of these, Adam [13] produced the best results
and is reported here. Similarly, we tested various batch-sizes mb and report results for mb = 64.
For gradient descent (GD), we used a standard implementation of L-BFGS-B [21]. In both cases,
gradient-based optimizers were run using 32 starting points sampled from the acquisition function.
Finally, for both q-PI and q-ES, we set the temperature � = 0.01; and, for q-UCB, we set the confi-
dence parameter � =

√

3.
Prior to running our experiments, we configured each acquisition function optimizer such that its run-
time approximately matched that of the others. Further details regarding our experiments, including
individual runtimes, are provided in Appendix B.
To help reduce the number of potentially confounding variables, we experimented on 8-dimensional
tasks drawn from a Gaussian process prior with known hyperparameters. For each combination of
acquisition function and optimizer, trials began with q randomly chosen observations and iterated
by choosing q queries at a time.4 Each pair was run on a total of 16 sampled tasks, with results
shown in Figure 2. Across acquisition functions, gradient-based strategies markedly outperformed
gradient-free alternatives. Further, stochastic and deterministic gradient methods delivered compa-
rable performance.

4 Conclusion

We show how many popular acquisition functions can be written as Gaussian integrals amenable to
the reparameterization trick. By reparameterizing these integrals, we clarify the differentiability of
theirMonte Carlo estimates and, in turn, provide a generalizedmethod for using gradients to optimize
acquisition values. Our results clearly demonstrate the superiority of gradient-based approaches
for optimizing acquisition functions, even in modest dimensional cases. Further, we show how,
by looking at the associated integrals through the lens of the reparameterization trick, the difficult
process of deriving theoretically sound acquisition functions may be greatly simplified.

4Methods discussed here extend to the parallel asynchronous setting; but, we did not explore this option.
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A Parallel Upper Confidence Bound (q-UCB)

Working backward through (2), we derive an exact expression for parallel UCB. In doing so, we
begin with the definition

∫

∞

0

√

2�y (y; 0, �2)dy = 1
2 ∫

∞

−∞
|

√

2��z| (z; 0, 1)dz = �, (4)

where |⋅| denotes the (element-wise) absolute value operator.5 Using this fact and given z ∼  (0, 1),
let �̃2 ≜ (��∕2)�2 such that E [|�̃z|] = �1∕2�. Under this notation, marginal UCB can be expressed as

1-UCB(x; �) = � + �1∕2� (5)

= ∫

∞

−∞
� + |�̃z| (z; 0, 1)dz (6)

= ∫

∞

−∞
� + |y − �| (y;�, �̃2)dy (7)

where (�, �2) parameterize a Gaussian posterior over y = f (x). This integral form of 1-UCB is
advantageous precisely because it naturally lends itself to the generalized expression

q-UCB(X; �) = ∫

∞

−∞
max(� + |y − �|) (y;�, �̃)dy (8)

= ∫

∞

−∞
max(� + |L̃z|) (z; 0, I)dz (9)

≈ 1
n
∑n

k=1
max(� + |L̃zk|) for zk ∼  (0, I) , (10)

where L̃L̃⊤ = �̃ ≜ (��∕2)�. This representation has the requisite property that, for any size q′ ≤ q
subset of X, the value obtained when marginalizing out the remaining q − q′ terms is its q′-UCB
value.
Previous methods for parallelizing UCB have approached the problem by imitating a purely sequen-
tial strategy [4, 6]. Because a fully Bayesian approach to sequential selection generally involves an
exponential number of posteriors, these works incorporate various well-chosen heuristics for the pur-
pose of efficiently approximate parallel UCB.6 By directly addressing the associated q-dimensional
integral however, Equation (10) avoids the need for such approximations and, instead, unbiasedly
estimates the true value.
Finally, the special case of marginal UCB (6) can be further simplified as

1-UCB(x; �) = � + 2∫

∞

0
�̃z (z; 0, 1)dz = ∫

∞

�
y (y;�, 2���2)dy, (11)

revealing an intuitive form, namely, the expectation of a Gaussian random variable (with rescaled
covariance) above its mean.

5This definition comes directly from the standard integral identity ∫ ∞
0 xe−ax2dx = 1∕2a.

6Due to the stochastic nature of the mean updates, the number of posteriors grows exponentially in q.
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B Experiment details

Runtimes of acquisition function optimizers
Optimizer q-EI q-UCB q-PI q-SR

Random Search (RS) 23.9 ± 2.3 17.8 ± 1.6 20.1 ± 1.9 20.4 ± 1.9
Dividing Rectangles (DIRECT) 19.8 ± 1.5 21.5 ± 1.9 21.0 ± 1.7 20.2 ± 1.5

GD (L-BFGS-B) 19.9 ± 9.0 18.2 ± 1.4 17.6 ± 7.8 13.7 ± 1.2
SGD (Adam) 17.6 ± 9.2 13.6 ± 5.8 15.6 ± 6.0 15.4 ± 5.9

Table 2: Average runtime in seconds for each combination of acquisition function and
optimizer when choosing the next pool of inputs. Reported numbers denote the mean and
standard deviation of recorded wall-clock times.

To provide fair comparison between acquisition function optimizers, efforts were made to approx-
imately match their respective runtimes. First, Random Search was run using a set of 215 uniform
random pools X, at each step during BO. Subsequently, RS’s average runtime, measured over a
handful of preliminary trials, was used as a target value when configuring the remaining optimizers.
Table 2 provides individual runtimes for each combination of acquisition function and optimizer.
For stochastic gradient descent, we tested the following optimizers: SGD with momentum,
RMSProp, and Adam. Trials were run using batch-sizes mb ∈ {32, 64, 128, 256}, each time tun-
ing the number of SGD steps for equivalent runtimes. Of the tested configurations, 1024 steps using
mb = 64 delivered the best performance.
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