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Abstract

We consider multi-attribute Bayesian optimization, where each design in an opti-
mization problem’s feasible space is associated with a vector of attributes that can
be evaluated via a time-consuming computer code, and each vector of attributes
is assigned a utility according to a decision-maker’s utility function. A standard
Bayesian optimization approach could be applied if the utility function were known
to us: we would place a Bayesian prior distribution over the composition of the
objective function, which returns a design’s vector of attributes, and the utility func-
tion, which maps those attributes onto a utility. In contrast, we assume the utility
function cannot be evaluated and is known implicitly only to the decision-maker.
We propose a Bayesian optimization algorithm that chooses the designs to evaluate,
such that the expected utility of the design chosen by the decision-maker, according
to our algorithm’s estimate of the objective function, is large. In contrast with
existing approaches for multi-attribute optimization that focus on estimating a
Pareto frontier, our approach can take advantage of prior information about the
decision-maker’s utility, obtained from past experiences with the decision-maker
or from a utility elicitation process.

1 Introduction

When making decisions using optimization methods, decision-makers often find it challenging to
combine multiple competing attributes into a single objective function that quantifies desirability
of an arbitrary design, and usually prefer instead to select from several concrete options [10]. This
arises, for example, when trading different measures of quality in an information retrieval system [1],
or speed against accuracy in the context of machine learning models [8].

One approach is to simply force the decision-maker to select a single-objective function, without any
structure or support, and then optimize with respect to this objective. This is often problematic because
the objective function chosen may be misaligned with the decision-maker’s true preferences. A second
approach is to use a utility elicitation technique [3, 5] to find the decision-makers’ preferences over
attributes. However, such elicitation processes are often limited by time or privacy constraints,
and thus substantial uncertainty remains. When the decision-maker’s preferences are known to be
monotone with respect to the attributes, a third approach is to estimate the Pareto frontier [2, 11].
However, this approach ignores specific prior knowledge of the decision-maker’s preferences, such
as relative importance of the attributes. Furthermore, estimating the Pareto frontier requires a greater
number of time-consuming function evaluations than does optimizing a single objective, especially if
the number of attributes is large.

We present a novel approach to this problem by viewing it as a single-objective optimization problem
determined by the partially hidden decision-maker’s preferences. Specifically, we assume that a
probability distribution over the decision-maker’s preferences, obtained by a partial utility elicitation
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process or information from past experiences in similar contexts, is available. Given this probability
distribution, the problem becomes to estimate the attributes for potential solutions in a way that,
when they are made available to the decision-maker, the expected utility of the design chosen by the
decision-maker is as large as possible.

Our approach is designed for multi-attribute optimization problems in which a design’s attribute
vector is obtained by a time-consuming computer code or an expensive physical process. We follow
a Bayesian optimization framework [4], modeling this mapping from designs to attributes with a
multi-output Gaussian process, and using our model of utility uncertainty and a knowledge-gradient
approach [17, 7] to derive an acquisition function that we optimize to find each point to sample.

Recently, multi-attribute optimization has been studied by other researchers within the Bayesian
optimization framework [13, 2, 11]. To the best of our knowledge, all of this work has focused on
estimating the Pareto frontier of the objective function, typically by defining a single-valued function
over the space of outputs that captures closeness to the Pareto front; this function, in turn, is used to
construct an acquisition function that helps balancing exploration and exploitation.

Our work is also related to [6], who developed a knowledge-gradient method for the pure exploration
multi-armed bandit problem with multiple attributes using a similar utility uncertainty approach.

2 Problem formulation

In this section we state our assumptions and formalize the problem to be solved.

We assume that the space of designs is a set D ⊆ Rd and attributes are given by an expensive-
to-evaluate black-box function f : D → Rm. We also assume that there is a decision-maker
whose preference over designs is characterized by a design’s attributes y through a utility function,
U(y) = θ>y, i.e., the decision-maker prefers a design x over x′ if and only if θ>f(x) > θ>f(x′).
Thus, of all the designs, the decision-maker most prefers one in the set arg maxx∈D θ

>f(x). If
there is uncertainty about the value of f(x) quantified by a Bayesian posterior distribution, then we
suppose that the decision-maker selects according to the expected utility, given knowledge of her own
utility function, most preferring argmaxx∈D E

[
θ>f(x) | θ

]
, where the expectation is taken over

f(x).

If θ were known to us, we could apply a standard single-objective optimization technique to find one
with largest θ>f(x). Instead, we assume that θ is unknown, and that the algorithm that samples f
has access only to Bayesian prior probability distribution over θ, which may be obtained by a brief
and incomplete utility elicitation exercise [3, 5], or by observing past decisions made by the decision-
maker. We let Pθ represent this prior probability distribution and assume it is concentrated on a set
Θ ⊂ Rm. Thus, if the decision-maker were asked to choose the best among D designs with known
attribute vectors y(1), . . . ,y(D), the expected utility generated would be E

[
maxi=1,...,D θ

>y(i)
]
,

where the expectation is over θ.

As is standard in Bayesian optimization [16], we place a Gaussian process prior on f . We use a
multi-output Gaussian process GP(µ,K) and assume that evaluations of f are either noise-free or of
the form y = f(x) + ε(x), where ε(x) ∼ N (0,Σ(x)) is independent across evaluations.

After observing N evaluations of f , y(1), . . . ,y(N), at points x(1), . . . ,x(N), respectively, the
estimates of the designs’ attributes are given by the posterior distribution GP

(
µ(N),K(N)

)
. We

suppose that, after these N evaluations, the algorithm provides the posterior to the decision maker. As
discussed above, the decision maker will then select a design in the set argmaxx∈D EN

[
θ>f(x) | θ

]
where EN indicates the expectation taken with respect to the posterior givenN samples. The expected
utility generated, given both θ and the N samples, is

max
x∈D

EN
[
θ>f(x) | θ

]
= max

x∈D
θ>µ(N)(x), (1)

Thus, our goal is to design a sampling policy that adaptively chooses points to sample x(1), . . . ,x(N)

to maximize the expected value of (1),

E
[
max
x∈D

θ>µ(N)(x)

]
, (2)

where this expectation is taken over both µ(N)(x) and θ.
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3 Sampling policy

While a sampling policy that maximizes (2) can in principle be computed by treating the problem as
a partially observable Markov decision process [9, 14], we believe that doing so is computationally
intractable in general.

Instead, we propose a sampling policy that approximately maximizes (2) using a one-step assumption,
similar to that used to derive knowledge-gradient methods for single-objective Bayesian optimization
problems [7]. This policy chooses the next point to sample that would be optimal if it were the last
sample we were able to take. Thus, our work generalizes the knowledge-gradient to multi-attribute
Bayesian optimization.

At period n of the sampling stage, this one-step optimal point x′ ∈ D is the one that maximizes (with
ties broken arbitrarily) the expected value that would be received according to (1) if N were equal to
n+ 1,

En
[
max
x∈D

θ>µ(n+1)(x) | x(n+1) = x′
]
,

where the expectation is over θ and the randomness in µ(n+1)(x) given the time-n posterior on f and
our decision to sample x′.

To make parallels to existing work on knowledge-gradient methods [7, 17], we may subtract from
this the value that would be received if N were equal to n, to obtain a measure of improvement
due to sampling. Since this quantity is the same for all sampling decisions x(n+1), our policy’s
sampling decision is also the point that maximizes this quantity. We call this the multi-attribute
knowledge-gradient (maKG) factor,

maKG(x′) = En
[
max
x∈D

θ>µ(n+1)(x)−max
x∈D

θ>µ(n)(x) | x(n+1) = x′
]
. (3)

Note that
maKG(x′) = E [KG(x′; θ)] , (4)

where

KG(x′; θ) = En
[
max
x∈D

θ>µ(n+1)(x)−max
x∈D

θ>µ(n)(x) | x(n+1) = x′, θ

]
. (5)

As the notation suggests, KG(x′; θ) is simply the standard knowledge-gradient factor with respect to
the function θ>f(x), which, by standard properties of the Gaussian distribution, at period n of the
sampling stage is distributed according to a single-output Gaussian process GP

(
θ>µ(n), θ>K(n)θ

)
.

In particular, KG(x′; θ) can be computed as in the single-objective case; we refer the reader to [15]
for a detailed description. Thus, in general we can compute maKG(x′) using simple Monte Carlo by
first sampling θ from Pθ and then computing KG(x′; θ). Furthermore, if the cardinality of Θ is small,
maKG(x′) can also be computed as

maKG(x′) =
∑
θ∈Θ

Pθ(θ)KG(x′; θ). (6)

If the cardinality of D is small, maKG can be maximized through complete enumeration, otherwise,
one may employ a stochastic gradient descent approach similar to [17].

We emphasize that a similar analysis allows to generalize other well known policies for single-
objective Bayesian optimization, such as expected improvement or predictive entropy search, to
the multi-attribute setting. In the next section we present numerical experiments analyzing the
performance of our policy and the multi-attribute generalization of expected improvement, which we
call multi-attribute expected improvement (maEI).

4 Empirical results

To evaluate the performance of our policy, we perform numerical experiments on the following test
problems. Our measure of performance is E

[
maxx∈D θ

>f(x) | f
]
, where the expectation is over θ

and f is the true underlying function.
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In all cases we took the Gaussian process model to be independent across attributes, each with a
squared exponential kernel. Also, independent Gaussian noise with variance σ2 = 1 was added to
each measurement for both attributes; the value of σ2 was not known to our algorithm.

4.1 Synthetic test

In this problem, with results pictured below in Figure 1 (left), we consider the design space,
D = [−5, 5]2, f : D → R2 given by f1 = Rosenbrock2 and f2(x) = (x1 − 1)2 sin2(x2),
Θ = {(cos(αl), sin(αl))}10

l=1, where αl = π
2
l−1
9 , and Pθ the uniform distribution over Θ.

4.2 The assemble-to-order benchmark

The assemble-to-order (ATO) benchmark is a reinforcement learning problem from a business
application where the goal is to optimize a target level vector; see [12] for a detailed description of
the problem. For our experiment we consider only the first two of items and take as attributes the
profit and the total number of lost orders. Here, Θ = {(1,− l

1000 )}5l=1, that is, the utility is given by
the profit minus a linear penalization on the number of lost orders, and Pθ is the uniform distribution
over Θ. We picture the results below in Figure 1 (right).
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Figure 1: (left) Average performance over 50 replications on the synthetic problem of the maKG
policy, the maEI policy and the policy that chooses the designs to sample uniformly at random. (right)
Average performance over 25 replications of the aforementioned policies on the ATO benchmark.

5 Conclusion and future work

We introduced a new approach to multi-attribute Bayesian optimization in which the problem is
seen as a single-objective optimization problem determined by the underlying decision-maker’s
preferences. Our formulation leverages prior information on these preferences to improve efficiency
during the sampling stage.

One important direction of future work is to extend our analysis to a richer class of utility functions.
However, this is challenging because the current scheme to compute the multi-attribute knowledge-
gradient factor highly depends on the utility function being linear. Another direction of future work
is to analyze the setting in which interaction with the decision-maker occurs during the sampling
stage. Specifically, it would be interesting to understand the behavior of our policy under multiple
updates of the distribution over the decision-maker’s preferences. Finally, we currently assume that
the decision-maker can select the best design according to the estimates offered, which is reasonable
only if the space of designs is not too large. Thus, it would be relevant to understand how to offer
only a small subset of designs such that the expected utility of the decision-maker’s choice is still
large.
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