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Abstract

We present a framework in which Bayesian Optimization is used for real-time
optimal control. In particular, Bayesian Optimization is applied to the real-time
altitude optimization of an airborne wind energy (AWE) system, for the purpose of
maximizing net energy production.

1 Introduction

Airborne Wind Energy (AWE) systems are a new paradigm for wind turbines in which the structural
elements of conventional wind turbines are replaced with tethers and a lifting body to harvest wind
power from significantly increased altitudes (typically up to 600m). At those altitudes, winds are
stronger and more consistent than ground-level winds. Besides being able to operate at much higher
altitudes than traditional turbines, AWE systems also provide additional control degrees of freedom
that allow the systems to adjust their operating altitudes and intentionally induce crosswind motions
to enhance power output. A fundamental challenge lies in choosing what altitude do we go to next,
particularly in a partially observable wind speed vs. altitude (wind shear) profile.

For the altitude optimization problem at hand, it is desirable to employ a control system that can
learn the statistical properties of the wind shear profile online, thereby alleviating the need for offline
data collection prior to running the control system. One of the most studied problems in the machine
learning community is the design of optimization algorithms for real-world applications using scarce
data. In existing literature, this problem has been studied in the context of sequential decision-
making problems aimed at learning the behavior of an objective function (called exploration) while
simultaneously trying to optimize performance (called exploitation). As an efficient and systematic
approach for balancing exploration and exploration in a partially observable environment, Bayesian
Optimization has been applied to various real-world problems [1, 2, 3, 4]. In general, Bayesian
Optimization aims to find the global optimum of an unknown, expensive-to-evaluate, and black-box
function within only a few evaluations.

1.1 Energy Generation Model

In this section, we formalize the objective function for the altitude optimization problem. An
appropriate objective function should account for the energy generated by the turbine and the energy
lost by adjusting and maintaining altitude (even when maintaining altitude, control energy must be
expended to make small adjustments to the tethers in order to reject typical levels of turbulence). In
order to account for each of these factors, the instantaneous net power generation is expressed as [6]:

Ptotal = c1 min
(
Vwind, Vrated

)3 − c2V 2
wind + Pz

(
Vwind, ż

)
, (1)
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Figure 1: Altaeros Buoyant Airborne Turbine (BAT), Image Credit: [5]

In (1), z is the operating altitude, Vwind(z) is the wind speed at the operating altitude, Vrated is the
turbine’s rated wind speed, Pz is the instantaneous power required for or regenerated by adjusting
altitude, and c1,2 are constant parameters that depend upon the turbine’s power curve and flight control
system, respectively. We will use a simplified version of (1) that lumps motoring and regenerated
power into a single term that penalizes instantaneous altitude adjustment.

P = c1 min
(
Vwind(z), Vrated

)3

− c2V 2
wind − c̄3V 2

wind | ż |, (2)

Ultimately, equation (2) serves as our objective function, which should be maximized.

1.2 Bayesian Optimization

Suppose that we want to maximize an unknown, black-box, and expensive-to-evaluate objective
function. Due to the cost associated with evaluating this function, it is crucial to select the location of
each new evaluation deliberately. Bayesian Optimization represents a promising candidate strategy
for this altitude optimization, as Bayesian Optimization focuses specifically on converging to the
global optimum of an unknown function within a minimal number of evaluations on the real system.
The major assumption here is that function evaluation is expensive, whereas computational resources
are cheap. This matches the altitude optimization problem at hand, where each evaluation of the
objective function requires the physical AWE system to relocate itself to a new altitude, necessitating
substantial time and energy expenditure. Broadly speaking, there are two main components to
Bayesian Optimization. First, we need an appropriate model of the objective function. Second, we
need to choose an acquisition function, which characterizes the fitness of each candidate value of
the next operating altitude. The maximization of the expected value of this acquisition function
determines the next point (altitude) to operate the system at.

1.2.1 Learning Phase: Using Gaussian Processes (GPs)

In general, a GP is fully specified by its mean function, µ(z), which is assumed to be zero without
loss of generality [7] (a coordinate shift can be used to generate a zero mean objective function), and
covariance function, k(z, z′):

P (z) ∼ GP
(
µ(z), k(z, z′)

)
, (3)

In the context of altitude optimization problem, the GP framework is used to predict the generated
power, P (z), at candidate altitude, zc, based on a set of t past observations, D1:t = {z1:t, P (z1:t)}.
The power at candidate altitude zc is modeled to follow a multivariate Gaussian distribution [7]:[

yt
P (zc)

]
∼ N

(
0,

[
Kt + σ2

ε It kTt
kt k(zc, zc)

])
, (4)

where yt = {P (z1), · · · , P (zt)} is the vector of observed function values. Moreover, the vector
kt(z) = [k(zc, z1), · · · , k(zc, zt)] encodes the covariances between the candidate altitude, zc, and
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the past data points, z1:t. The past-data covariance matrix, with entries [Kt](i,j) = k(zi, zj) for
i, j ∈ {1, · · · , t}, characterizes the covariances between pairs of past data points. The identity matrix
is represented by It and σε represents the noise variance [7].

A common choice for the kernel function is a Squared Exponential (SE) kernel, which takes the form:

k(zi, zj) = σ2
0 exp

(
− 1

2
(zi − zj)TΛ−2(zi − zj)

)
. (5)

Kernel hyper-parameters are identified by maximizing the marginal log-likelihood of the existing
observed data, D [7]:

θ∗ = arg max log
θ

p(yt | z1:t, θ) (6)

Once the hyper-parameters have been identified, the predictive mean and variance at zc, conditioned
on these past observations, can be expressed as:

µt(zc | D) = kt(zc)
(
Kt + Itσ

2
ε

)−1
yTt , (7)

σ2
t (zc | D) = k(zc, zc)− kt(zc)

(
Kt + Itσ

2
ε

)−1
kTt (zc), (8)

1.2.2 Optimization Phase

The ultimate goal of Bayesian Optimization is to determine the next point based on past observations.
Among several choices of acquisition functions, we use an acquisition function belonging to the
improvement-based family [8]. More precisely, the next operating point is selected as the one that
maximizes the so-called expected improvement:

zt+1 = arg max
z

E
(

max {0, Pt+1(z)− P (z)max} | D1:t

)
(9)

where max {0, Pt+1(z)− P (z)max)} represents the improvement toward the best value of the objec-
tive function so far, P (z)max. This quantity is referred to as expected improvement.

1.3 Context-Dependent Optimization

The time-varying nature of our objective function (the wind speed at a given altitude does not remain
constant over time) compels us to modify the conventional Bayesian Optimization method to account
for spatiotemporal variation of the wind shear profile. One way to cope with the dynamic nature of
the objective function is through contextual GP [9]. More precisely, one of the benefits of modeling
the objective function using GPs is that we can characterize the statistical properties of the system
output based on environmental variables, called context. To deal with time-varying nature of our
objective function, we consider time as the context.

Employing contextual GP is very straightforward. In Section 1.2.1, the kernel of the GP is defined
only in terms of altitude. To account for time-dependency, we modify the kernel structure such that it
consists of an addition of two kernels, one over altitude, kz , and one over time, kt:

k
(

(z, t), (z′, t′)
)

= kz(z, z
′) + kt(t, t

′), (10)

Context-Dependent Bayesian Optimization is summarized in Algorithm 1. First, at the very first two
time steps, the procedure is initialized by two previously evaluated altitudes and the corresponding
function values (line 2). Then, at each time step, the context (time) is fixed at the current instance
(line 4). Next, the composite kernel is constructed based upon Eq. (10) (line 5). The GP model and
its predictive mean and variance are computed (line 6-7). Then, the acquisition function value is
computed and optimization is done only over the altitude space (line 8-9). Finally, the suggested
candidate (altitude) and the current time are augmented to the data (line 10), and the process is
restarted.
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Algorithm 1 Context-Dependent Bayesian Optimization (CDBO)
1: procedure ALTITUDE OPTIMIZATION WITH CDBO
2: D ← Initialize: {(z1:2, t1:2), P (z1:2)}
3: for each time step do
4: Set the context into the current time
5: Construct a composite kernel

(
Eq. (10)

)
6: Train a GP model from D
7: Compute predictive mean and variance of GP
8: Compute acquisition function
9: Find z∗ that optimizes acquisition function

10: Append {(z∗, tcurrent time), P (z∗)} to D
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Figure 2: Comparison of net energy production over the course of one week. Context-Dependent
Bayesian Optimization outperforms off-line optimum fixed altitude, minimum fixed altitude, and
maximum fixed altitude scenarios.

2 RESULTS

We evaluated the proposed context-dependent Bayesian Optimization (CDBO) algorithm by simulat-
ing the model based on available data, acquired by a wind profiler in Cape Henlopen, DE [10]. Here,
we compare the system performance under four different control scenarios:

• Scenario 1: Off-line Optimum Fixed Altitude: The first scenario involves flying the AWE
at an optimum fixed altitude. We identify this optimal fixed altitude by off-line calculation
of energy generation at different altitudes, using given wind data.

• Scenario 2: Minimum Fixed Altitude: The second scenario is representative of conven-
tional towered wind turbines. For this scenario, we simulate the performance of the system
operating at the lowest available altitude (146m), which is comparable to the hub height of
the world’s tallest towered wind turbines.

• Scenario 3: Maximum Fixed Altitude: The third scenario involves flying the AWE at the
maximum tabulated fixed altitude, 1528m.

• Scenario 4: Bayesian Optimization: The fourth scenario employs Bayesian Optimization,
as outlined in Algorithm 1.

Fig. 2 shows the net energy production across all scenarios. One can conclude from this figure that
the CDBO algorithm results in superior net energy production when compared to other scenarios.

3 CONCLUSION

We presented a data-driven approach for optimizing the altitude of an AWE system to maximize
the system’s net power output. In implementing this altitude optimization approach, we extended
conventional Bayesian Optimization to capture time-dependent patterns of our objective function.
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