
Learning to Transfer Initializations
for Bayesian Hyperparameter Optimization

Jungtaek Kim, Saehoon Kim∗, and Seungjin Choi
Department of Computer Science and Engineering

Pohang University of Science and Technology
77 Cheongam-ro, Nam-gu, Pohang 37673, Korea
{jtkim,kshkawa,seungjin}@postech.ac.kr

Abstract

We propose a neural network to learn meta-features over datasets, which is used
to select initial points for Bayesian hyperparameter optimization. Specifically, we
retrieve k-nearest datasets to transfer a prior knowledge on initial points, where simi-
larity over datasets is computed by learned meta-features. Experiments demonstrate
that our learned meta-features are useful in optimizing several hyperparameters of
deep residual networks for image classification.

1 Introduction

Hyperparameter optimization aims to find the best configuration of hyperparameters for a particular
machine learning model, which typically requires many cross-validations on various combinations
of hyperparameters. This is a crucial performance bottleneck of automated machine learning,
because it is practically impossible to evaluate validation errors on every possible combination of
hyperparameters under limited computational resources. To effectively reduce the search space,
sequential model-based optimization [Hutter et al., 2011, Bergstra et al., 2011, Snoek et al., 2012]
updates a regression model that maps hyperparameters into the performance of learning model to
select a plausible hyperparameter sequentially. It still requires several initial points to build the
regression model, which is commonly referred to as a cold-start problem.

Human experts on machine learning transfer their prior knowledge to resolve such cold-start problem
by assuming that similar datasets in views of human experts typically have similar hyperparameters
to achieve the best performance. Meta-learning [Schmidhuber, 1987, Thrun and Pratt, 1998, Chen
et al., 2017] attempts to resolve that problem, because it consists of methods that effectively learn a
model by transferring a prior knowledge from similar tasks. In the context of sequential model-based
optimization, notable meta-learning methods can be categorized by two orthogonal approaches:
(1) how to develop covariance functions to capture the shared information between tasks [Bonilla
et al., 2008, Bardenet et al., 2013, Swersky et al., 2013] in the context of Gaussian process (GP)
regression; (2) how to design hand-crafted and simple learned meta-features that describe similarity
over datasets [Michie et al., 1994, Pfahringer et al., 2000, Feurer et al., 2015] to transfer a prior
knowledge.

In this paper, we propose a meta-learning framework to find the best hyperparameter for a classifier
by directly learning meta-features with a Siamese network [Bromley et al., 1994] where each network
is composed of convolutional bi-directional long short-term memory network (LSTM) [Hochreiter
and Schmidhuber, 1997] to generate feature vectors that describe datasets. We train the Siamese
convolutional bi-directional LSTM by minimizing the difference between meta-feature distance
and ground-truth target distance: (1) meta-feature distance is simply defined as Euclidean distance
∗S. Kim is also affiliated with AItrics.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Convolutional
Neural

Network

Forward Layer

Backward Layer

Meta-feature Distance

Bi-directional LSTM

Dataset

CNNCNNCNN

Dataset

CNN CNN CNN

All weights are shared.

Figure 1: Our model with a Siamese architecture is composed of two identical convolutional bi-
directional LSTMs.

between feature vectors obtained by the outputs of the identical networks in the Siamese network; (2)
ground-truth target distance is measured byL1 distance between two mappings from a hyperparameter
space to classification accuracy.

2 Background

2.1 Hyperparameter Optimization

Suppose that we are given a dataset D = {Dtrain,Dval} (training and validation set) with which
we train a model involving hyperparameters θ = [θ1, . . . , θn]>. Assuming that θi ∈ Θi, the
hyperparameter optimization searches the best configuration of hyperparameters over the space
Θ = Θ1 × · · · × Θn. Given a dataset D, the best hyperparameter configuration is determined by
minimizing the validation error J (θ,Dtrain,Dval). Earlier work on hyperparameter optimization is
based on grid or random search [Bergstra and Bengio, 2012]. Recently various methods based on
sequential model-based optimization have been proposed, including sequential model-based algorithm
configuration (SMAC) [Hutter et al., 2011], Spearmint [Snoek et al., 2012], and tree-structured Parzen
estimator (TPE) [Bergstra et al., 2011].

2.2 Sequential Model-based Optimization

Sequential model-based optimization (SMBO) referred to as Bayesian hyperparameter optimization
(BHO) tries to find the best configuration of hyperparameters θ∗, when we are given a target function
J (θ,Dtrain,Dval) that returns validation error and a few different configurations of hyperparameters
at initial design. BHO searches a minimum, gradually accumulating (θt,J (θt)) with t increasing.
Starting with a set of initial design {(θ1,J1), . . . , (θt,Jt)}, a Gaussian process (GP) regression
modelMGP fits to this set of examples. The GP regression modelMGP serves as a surrogate function
that approximates the landscape of J over the space Θ. The surrogate function well approximates
the regions exploited so far but has high uncertainty about the regions that are not yet explored. Thus,
rather than optimizing the surrogate function itself, the acquisition function a(θ|MGP), which is
constructed to balance a trade-off between exploitation and exploration, is optimized to select the
next configuration of hyperparameters at which the validation error J is evaluated. Assuming that
the current GP has mean µ(θ) and variance σ2(θ), two popular acquisition functions that we use
in this paper are expected improvement (EI) [Mockus et al., 1978] and GP upper confidence bound
(GP-UCB) [Srinivas et al., 2010]. Instead of using a zero mean function for GP, a suitable mean
function could be useful to BHO in case that a small number of initial points is given.

2

3 Proposed Method: Meta-feature Learning with Siamese Architecture

We describe our model with a Siamese LSTM architecture in detail. As shown in Fig. 1, our model
for meta-feature learning is composed of two identical deep neural networks that share the same set
of weights. Each identical neural network is referred to as wing. Each wing of our model consists of
CNNs (with two convolutional layers and two fully-connected layers) followed by the bi-directional
LSTMs. We use the LSTM to learn the bi-directional characteristics in a set of image features.

Suppose that a pair of two image datasets (D(i),D(j)) is given, where each dataset contains τ number
of images, denoted by data(k)1 , data

(k)
2 , . . . , data

(k)
τ for k = i, j. The goal is to learn meta-features

mi and mj that encode the characteristics of datasets D(i) and D(j), respectively. Each image data is
provided to the individual CNN which produces image features, fed into the bi-directional LSTM.

We train a set of weights and biases that are shared by two wings, such that the Euclidean distance
‖mi −mj‖2 between meta-features matches the target distance dtarget(D(i),D(j)) between datasets
that should be provided. Performance measure over hyperparameters for dataset pair (D(i),D(j))
has been observed preemptively, and the distance between two datasets is computed by comparing
preemptively observed mappings from hyperparameters to performance measure via target distance
function (target metric) dtarget(·, ·) such as L1 distance. More precisely, we compute L1 distance of
all pairwise configurations from two mappings to measure the target distance between datasets.

Algorithm 1 Meta-feature Learning over Datasets
Input: A set of n datasets {D1, . . . ,Dn}, target distance function dtarget(·, ·), batch size β ∈ N, step size τ ∈ N,

number of iterations T ∈ N
Output: Siamese LSTM modelMS-LSTM trained over {D1, . . . ,Dn}

1: InitializeMS-LSTM.
2: for t = 1, 2, . . . , T do
3: Sample β different pairs of datasets, i.e., {(Di,Dj)} for |i 6= j| = β, i, j = 1, . . . , n.
4: Sample τ data points from each dataset in the pair {(Di,Dj)} selected above, to make |Di| = |Dj | = τ .
5: Update parameters inMS-LSTM using dtarget(·, ·) and {(Di,Dj)} via backpropagation.
6: end for
7: returnMS-LSTM

Algorithm 1 shows how meta-feature over datasets is learned. Inputs to Algorithm 1 are: (1) a set of
n datasets {D1, . . . ,Dn}; (2) a target distance function that is mentioned above; (3) batch size β; (4)
step size τ ; (5) a number of iterations T . And it returns the learned Siamese LSTM modelMS-LSTM.
For given number of iterations T , β different pairs of datasets are sampled and τ data points from
each dataset in the selected pairs are subsampled. Using those pairs that have same τ data points,
the Siamese network,MS-LSTM is trained end-to-end via backpropagation. The difference between
the meta-feature distance and the target distance is minimized to optimize all shared weights in the
Siamese bi-directional LSTM: L(D(i),D(j)) =

[
dtarget(D(i),D(j))− ‖mi −mj‖2

]2
.

4 Experimental Results

Before training the Siamese network for BHO, the mappings from certain hyperparameters to
performance measure were measured. We used randomly subsampled datasets from MNIST, CIFAR-
10, ImageNet 200 (for recent ILSVRC object detection challenges), and Places 205. In this paper, we
measured classification accuracy with respect to batch size and initial learning rate for ResNet-26.
The accuracy was measured from the subsampled datasets that have 5 classes and 2000 images
per class. 20 scaled-down datasets for four image datasets were subsampled respectively, and 100
hyperparameter configurations were trained for each subsampled dataset.

After that, the Siamese bi-directional LSTMs were trained by the subsampled datasets. The pairs of
all 80 datasets were used to train the Siamese convolutional bi-directional LSTM. For ground-truth
labels, we computed L1 distance between histograms that show classification accuracy with respect to
hyperparameters. Given the trained Siamese networkMS-LSTM, it is possible to measure the distance
between test dataset and the training datasets by the learned meta-features. Then, k-nearest datasets
were selected, and their associated histograms between hyperparameters and classification accuracy
were employed in initializing BHO. After initializing with k hyperparameter configurations and prior

3

Algorithm 2 Bayesian Hyperparameter Optimization with Transferred Initial Points and GP Prior
Input: Learned Siamese LSTM modelMS-LSTM, target function J (·), limit T ∈ N > k
Output: Best configuration of hyperparameters θ∗

1: Find k-nearest neighbors using the learned Siamese bi-directional LSTM,MS-LSTM.
2: Obtain k classification accuracy histograms over hyperparameters {H1, . . . ,Hk}.
3: for i = 1, 2, . . . , k do
4: Find the best configuration θi on grid of the i-th histogramHi.
5: Evaluate Ji = J (θi).
6: end for
7: for j = k + 1, k + 2, . . . , T do
8: M← GP regression with the prior mean function 1

k

∑k
h=1Hh on {(θi,Ji)}j−1

i=1 .
9: Find θj = argmaxθ a(θ|M).

10: Evaluate Jj = J (θj).
11: end for
12: return θ∗ = argminθj∈{θ1,...,θT }

Jj

0 5 10 15 20
Iteration

8.0e-03

1.0e-02

1.2e-02

1.4e-02

M
in

im
um

 E
rro

r

(a) MNIST

0 5 10 15 20
Iteration

0.12

0.14

0.16

0.18

M
in

im
um

 E
rro

r

(b) CIFAR-10

0 5 10 15 20
Iteration

0.39

0.40

0.41

0.42

0.43

0.44

M
in

im
um

 E
rro

r

(c) CIFAR-100

0 5 10 15 20
Iteration

0.34

0.36

0.38

0.40

0.42

0.44

0.46

M
in

im
um

 E
rro

r

(d) STL-10

Random init. (EI)
Random init. (UCB)
3-nearest init. (EI)
3-nearest init.
(EI with GP prior)

Figure 2: Hyperparameter optimization for ResNet in the cases of four entire datasets: MNIST,
CIFAR-10, CIFAR-100, and STL-10. Three initial points were given for all experiments, and all
ResNets were trained for 50 epochs. Moreover, all experiments were repeated 5 times.

mean function of GP regression, we found the best candidate of hyperparameters for the machine
learning model as applying Bayesian optimization. EI and GP-UCB criteria in Bayesian optimization
were used to find the best hyperparameter configuration θ∗. These steps are described in Algorithm 2.

We implemented our method to initialize hyperparameter optimization based on GPyOpt [The GPyOpt
authors, 2016] and GPflow [Matthews et al., 2017]. We employed Bayesian optimization with EI
and GP-UCB criteria, as shown in Fig. 2. The entire datasets of MNIST, CIFAR-10, CIFAR-100,
and STL-10 (subsampled from labeled images on ImageNet) were used to learn ResNet-26 for BHO.
MNIST and CIFAR-10 were used to train the Siamese convolutional bi-directional LSTM. On the
other hand, CIFAR-100 and STL-10 were not used to train the Siamese network. We conducted
BHOs with (1) random initializations for EI; (2) random initializations for GP-UCB; (3) 3-nearest
datasets initializations for EI; (4) 3-nearest datasets initializations for EI with given prior mean.
Initializations of two hyperparameters, batch size and initial learning rate were set to k previous best
hyperparameter configurations from each nearest dataset, and GP prior mean function was set to the
average of the k-nearest mappings. A shown in Fig. 2, our methods outperformed rather than other
BHOs with random initializations.

5 Conclusion

In this paper, we proposed the method to learn meta-features over datasets using the Siamese bi-
directional LSTMs. We showed that the Siamese networks can train a distance function between two
datasets that is learned to match the target distance. Furthermore, the k-nearest datasets determined
by the learned networks can employ in initializing hyperparameter optimization.

Acknowledgments

A portion of this work was supported by NAVER. S. Kim was partly supported by Institute for
Information & communications Technology Promotion (IITP) grant funded by the Korea government
(MSIT) (No.2017-0-01779, A machine learning and statistical inference framework for explainable
artificial intelligence).

4

References
R. Bardenet, M. Brendel, B. Kégl, and M. Sebag. Collaborative hyperparameter tuning. In Proceed-

ings of the International Conference on Machine Learning (ICML), Atlanta, GA, USA, 2013.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of Machine
Learning Research, 13:281–305, 2012.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In
Advances in Neural Information Processing Systems (NIPS), volume 24, Granada, Spain, 2011.

E. V. Bonilla, K. M. A. Chai, and C. K. I. Williams. Multi-task Gaussian process prediction. In
Advances in Neural Information Processing Systems (NIPS), volume 21, Vancouver, Canada, 2008.

J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah. Signature verification using a "Siamese"
time delay neural network. In Advances in Neural Information Processing Systems (NIPS),
volume 7, Denver, CO, USA, 1994.

Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil, T. P. Lillicrap, M. Botvinick, and N. de
Freitas. Learning to learn without gradient descent by gradient descent. In Proceedings of the
International Conference on Machine Learning (ICML), Sydney, Austrailia, 2017.

M. Feurer, J. T. Springerberg, and F. Hutter. Initializing Bayesian hyperparameter optimization via
meta-leraning. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), Austin,
TX, USA, 2015.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
1997.

F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algo-
rithm configuration. In Proceedigns of the International Conference on Learning and Intelligent
Optimization, pages 507–523, Rome, Italy, 2011.

A. G. d. Matthews, M. van der Wilk, T. Nickson, K. Fujii, A. Boukouvalas, P. León-Villagrá,
Z. Ghahramani, and J. Hensman. GPflow: A Gaussian process library using TensorFlow. Journal
of Machine Learning Research, 18:1–6, 2017.

D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine learning, neural and statistical classification.
Ellis Horwood, 1994.

J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian methods for seeking the extremum.
Towards Global Optimization, 2:117–129, 1978.

B. Pfahringer, H. Bensusan, and C. Giraud-Carrier. Meta-learning by landmarking various learning
algorithms. In Proceedings of the International Conference on Machine Learning (ICML), pages
743–750, Stanford, CA, USA, 2000.

J. Schmidhuber. Evolutionary Principles in Self-Referential Learning. PhD thesis, Technical
University of Munich, 1987.

J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning
algorithms. In Advances in Neural Information Processing Systems (NIPS), volume 25, Lake
Tahoe, NV, USA, 2012.

N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit
setting: No regret and experimental design. In Proceedings of the International Conference on
Machine Learning (ICML), Haifa, Israel, 2010.

K. Swersky, J. Snoek, and R. P. Adams. Multi-task Bayesian optimization. In Advances in Neural
Information Processing Systems (NIPS), volume 26, Lake Tahoe, NV, USA, 2013.

The GPyOpt authors. GpyOpt: A Bayesian optimization framework in python, 2016. https:
//github.com/SheffieldML/GPyOpt.

S. Thrun and L. Pratt. Learning to Learn. Kluwer Academic Publishers, 1998.

5

https://github.com/SheffieldML/GPyOpt
https://github.com/SheffieldML/GPyOpt

	Introduction
	Background
	Hyperparameter Optimization
	Sequential Model-based Optimization

	Proposed Method: Meta-feature Learning with Siamese Architecture
	Experimental Results
	Conclusion

