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Abstract

Bayesian Optimization (BO) is a global optimization strategy designed to find the
minimum of a black-box function by using a Gaussian process (GP) as a surro-
gate model for the function to be optimized. In this work, we study learning and
optimization of unimodal functions using Bayesian optimization. We propose a
hierarchical model for unimodal functions based on Gaussian processes with virtual
derivative observations. We demonstrate that taking such structural prior informa-
tion into account can decrease the number of function evaluations significantly and
improve data efficiency.

1 Introduction

Bayesian optimization has proved itself a valuable tool for global optimization of expensive objective
functions. The objective functions are in general assumed to be black-box functions, whose analytical
form is unknown, but expensive to evaluate. However, if there is more information available, this
information should be taken into account in order to minimize the number of required function
evaluations. We focus on the case where the unknown objective functions are assumed to be
unimodal. Unimodality is a natural assumption in many applications, including modelling dose-
response relationships [} 2], Approximate Bayesian Computation (ABC) [3], and density estimation

[4].

A function f : R — R is said to be unimodal if there exist a point ¢y € R such that f(z) is
monotonically decreasing for z < ¢y and monotonically increasing for x > ¢o. Consequently,
the function f has a single minima at = ¢y. In this work, we study learning and optimization
of unimodal functions using the Bayesian optimization framework [5]. We will assume that f is
unimodal with a single minimum rather than a single maximum without loss of generality.

We propose a hierarchical model for unimodal functions based on Gaussian processes [6]], where the
unimodality assumption is encoded using virtual derivative observations [7]]. The contribution of this
paper is two-fold. First, we describe a Gaussian process-based model for unimodal functions (Section
[2), which can be applied to unimodal regression problems in general. Second, we demonstrate that
taking advantage of such structural prior knowledge can lead to improved data efficiency in the
Bayesian optimization setting (Section [3).

2 Unimodal Regression using Gaussian processes

In this section, we will first briefly review Gaussian processes (GPs ) and Gaussian processes with
derivative information. Finally, we describe our proposed approach to unimodal regression based on
GPs .
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2.1 Gaussian Process Regression with Derivative Information

Gaussian processes are a flexible nonparametric family of distributions over functions [6]]. Consider
a dataset D = {a,, yn}n 1» where y,, is a noisy observation of f at z,,, i.e. yp = f(z5) + €n.
We assume a Gaussian process prior distribution for f ~ GP (u(+), k(-,-)), where ;i : R — R and
k : R x R — R are the mean and covariance functions, respectively. Assuming an isotropic Gaussian
observation model, the joint distribution becomes

p(y. f) = pWlfp(f) =N (y|f, > I) N (f|p, K), (1)

where £, = f(xn), tn = (), Kpn = k(2m, x,), and 02 > 0 is the noise variance. As the joint
distribution is Gaussian, any conditional or marginal distribution is readily available in closed form.
Similarly, the predictive distribution for a test point z* is also readily obtained by extending the joint
distribution to include f* = f(«*) and then computing the marginal posterior p(f*|D).

The derivative of a (differentiable) Gaussian process realization is also characterized by a Gaussian
process as differentiation is a linear operator [8]]. The first and second moments of the derivative
process can be obtained as partial derivatives of the moments of the process f [6]. By formulating a
joint model of f and f, it is possible to include derivative information in Gaussian process models.
Structural constraints such as monotonicity can be induced by introducing virtual observations of the
sign of the derivative function [7]].

2.2 Unimodal Gaussian Processes Regression

If f is a differentiable unimodal function with minima c¢g, then it holds that f’(z) < 0 for z < ¢
and f’(z) > 0 for > ¢o. Based on this observation, we propose a hierarchical model that induces
unimodality by introducing a set of virtual of derivative observations that satisfy these constraints.

Let p(f, f') be the joint model of a Gaussian process f and its derivative f’. Further, suppose
we observe the sign of f/ when evaluated at a set of point in the input space {xj}7 e 2z =

sign [f (z;)] € {—1,1} for j = 1...J. The joint model for a unimodal function f with observations
y then becomes

<
<

p(y, £, f',2) = p(y|f)p H (zilf}) = p(ylf)p H (vy2 ] )

where ¢ is the cumulative distribution function of a standardized Gaussian random variable and
v¢ > 0is a hyperparameter. The virtual likelihood term ¢ (v z; f]’) removes probability mass from
functions that violate the constraint on the sign of the derivative at z;.

However, observing z; is usually not feasible in practice. Instead we propose to model z; by taking
advantage of the observation that z; = —1 for Z; < ¢g and z; = 1 for Z; > cg. Thus, we can model
the binary sign observations as z;|z; ~ Ber (¢ (g(z;))), where g : R — R is a non-decreasing
function. For this, we use a Gaussian process with monotonicity constraints [7]] as a prior distribution
for g. Specifically, we introduce another Gaussian process g, its derivative ¢’ and virtual observations
of the sign of ¢’, which gives rise to the following model for z

J J
p(z,9.9") o [ [ Ber (216 (9:)) H ¢ (veg)) . 3)

Jj=1 Jj=1
where p(g,g’) is the joint Gaussian distribution of the g and g’ evaluated at the points {:Ej };]:1

and the virtual likelihood terms ¢ (ug g; ) for j = 1...J are constraining the derivatives of ¢’ to be
positive and thereby forcing g to be non- decreasmg Flnally, combining the models in eq. (2) and (@),
and marginalizing with respect to z gives rise to the following joint model

J
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Figure 1: a) Posterior mean and standard deviation for f for a toy data set with N = 30 observations
of the unimodal function y,, = 0.1(z,, — 3)? + €,,, where z,, ~ N (0,3?) and e,, ~ N (0,3). b)
Posterior distribution of positive derivatives of g, i.e. p(z; = 1|D). ¢) Posterior distribution of g. d)
10 realizations from the prior of f.

The marginal posterior p(f|D) of the model in eq. (@) can then be interpreted as a Gaussian
process subject to a unimodality constraint. Similarly, the model can easily be extended to include
f* = f(z*) in order to make predictions for test point 2*. Thus, the model can be applied for
probabilistic unimodal regression as well as Bayesian optimization of unimodal functions. The
posterior distributions of interest, p(f|D) and p(f*|D), are intractable and we have to resort to
approximate inference. We used the expectation propagation algorithm [9]. In this work, we have
focused on the one dimensional case as a proof of concept. However, the model can naturally be
extended to the D dimensions by introducing D Gaussian processes, where the i’th GP, g; : RP 5 R,
controls the sign of the ¢’th the partial derivative, % f. This approach also provides the flexibility to
only impose unimodality with respect to a subset of the dimensions, if desired.

3 Numerical experiments

In this section, we describe three experiments that demonstrates the properties of the proposed method.

3.1 Unimodal Regression using Toy Data

The purpose of the first experiment is to demonstrate how the model can be applied to unimodal
regression problems. We consider a toy data set with N = 30 noisy observations of the unimodal
function y,, = 0.1(z,, —3)%+e,,, where 2,, ~ N (0, 32) and e,, ~ N (0,3). We used J = 20 virtual
observations evenly distributed in the interval [—12,12]. We used a squared exponential function
plus a constant as covariance function for f and a squared exponential covariance function for g.
Both f and g were assumed to have zero mean. We used maximum a posteriori estimators for all
kernel hyperparameters and for the noise variance. We imposed a half Student-¢ distribution for the
prior variance of g and assumed uniform distributions for the remaining hyperparameters. Panel (a)
in Figure[I|shows the posterior distribution for the proposed model and for a regular GP. Panel (b)
and (c) show the posterior probability of the z; = 1 and the posterior distribution for g, respectively.
Panel (d) shows 10 realizations from the prior of f.

3.2 Simulation study

In the second experiment, we conducted a simulation study for Bayesian optimization of unimodal
functions from four different classes of functions. The first three classes were the negative densities of
univariate Gaussian, Student-¢, and beta distributions and the fourth class was (scaled and translated)
negative Tukey window functions. We sampled 200 functions from each class with random parameters.
All functions were normalized to have both domain and image in the unit interval and all functions
were corrupted with Gaussian noise of variance 0> = 0.052. Using three initial observations
at z € {0.2,0.5,0.8}, all functions were optimized using Bayesian optimization with expected
improvement as acquisition function [3]] for 20 iterations. We used the same kernels as described in
the previous experiment, but now we used half Student-¢ priors for both the lengthscale and variance
parameters of the squared exponential covariance function for f. Furthermore, we used lognormal
priors for the prior variance and lengthscale of g and an inverse Gamma prior for the noise variance.
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Figure 2: Results from a simulation study of Bayesian optimization of unimodal functions from four
different classes of functions: negative densities for Gaussian, student t, and beta distributions as well
as translated and scaled negative Tukey windows. The results are averaged over 200 realizations for
each class. The expected improvement acquisition function were used for all four classes.
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Figure 3: Learning the marginal posterior density of 3 for the Bioassay data set using. a) Posterior
distributions for the (unnormalized) density for after N = 4 iterations. b) Posterior distributions for
the (unnormalized) density for after N = 6 iterations. c) Total variation as a function of number of
iterations averaged across 100 runs.

Figure [2a)-(d) shows the function values as a function of the number of iterations for each of the
four function classes averaged across 200 realizations. It is seen that the unimodal GP significantly
outperforms the regular GP for all four function classes.

3.3 Density estimation

GPs have been applied as surrogate density models for problems, where the exact posterior density
is prohibitively expensive to evaluate [4]. In the final experiment, we demonstrate the benefit of
the unimodal model for this application in a setting, where the true density is readily available to
facilitate a quantitative evaluation of the proposed model. Consider the posterior distribution of a
generalized linear model with binomial observations, y;|0; ~ Bin (6;, n;), and a logit link function,
logit (¢;) = a + Ba;, with uniform prior distributions, p(c, 8) o 1. Using the unimodal GP, we
model the negative logarithm of the marginal posterior density of /5 for a Bioassay data set [10]. We
approximate the (unnormalized) density as p(53)  E [exp (—f(5))], where the expectation is with
respect to the posterior distribution of f. To learn the density function using as few evaluations as
possible, we use the variance of p(/3) as acquisition function. Starting from a single initial evaluation,
we perform Bayesian optimization for 20 iterations and for every iteration we compute the total
variation (TV) between the target density and the estimated density. We use a regular GP and a regular
GP with a Gaussian mean function (Laplace approximation) as baselines. Figure[3|a) and (b) show
the posterior for the (unnormalized) densities after N = 4 and N = 6 iterations, respectively. Panel
(b) shows the total variation as a function of number of iterations averaged over 100 runs.

4 Summary

We proposed a probabilistic method for unimodal regression using Gaussian processes. We have
demonstrated the method can be applied to learning and optimization of unimodal functions. In this
work, we focused on univariate problems to provide proof of concept, but we will extend it to higher
dimensions in future work.
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