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INTRODUCTION
Learning hyperparameters



Problem

• Gaussian processes (GPs) are powerful models able to
express a wide range of structure in nonlinear functions.

• This power is sometimes a curse, as it can be very
difficult to determine appropriate values of
hyperparameters, especially with small datasets.
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Small datasets

• Small datasets are inherent in situations when the
function of interest is very expensive, as is typical in
Bayesian optimization.

• Success on these problems hinges on accurate modeling
of uncertainty, and undetermined hyperparameters can
contribute a great deal (often hidden!).

• The traditional approach in these scenarios is to spend
some portion of the budget on model-agnostic
initialization (Latin hypercubes, etc.)

• We present a model-driven approach here.
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Motivating problem: Learning embeddings

• High-dimensionality has stymied the progress of
model-based approaches to many machine learning tasks.

• In particular, Gaussian processes approaches remain
intractable for large numbers of input variables.

• An old idea for combating this problem is to exploit
low-dimensional structure in the function, the most simple
example of which is a linear embedding.
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Learning embeddings for GPs

• We want to learn a function

f : RD → R,

where D is very large.
• We assume that f has low intrinsic dimension, that is,
that there is a function g : Rd → R such that

f(x) = g(Rx),

where R ∈ Rd×D is a matrix defining a linear embedding.
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Example

• Here f : R2 → R
(D = 2), but only
depends on a
one-dimensional projection
of x (d = 1).

• All function values are
realized along the black
line.  

 

f
x2

x1
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The GP model

If we knew the embedding R, modeling f would be
straightforward. Our model for f given the embedding R is a
zero-mean Gaussian process:

p(f | R) = GP(f ; 0, K),

with
K(x, x′;R) = κ(Rx,Rx′),

where κ is a covariance on Rd × Rd.
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The GP model

If κ is the familiar squared-exponential, then

K(x, x′;R, γ) = γ2 exp

[
−1

2
(x− x′)>R>R(x− x′)

]
.

This is a low-rank Mahalanobis covariance, also known as a
factor analysis covariance.
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Our approach

• Our goal is to learn R (in general, any θ) as quickly as
possible!

• Unlike previous approaches, which focus on random
embeddings (Wang, et al. 2013), we focus on learning the
embedding directly.
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What can happen with random choices

Djolonga, et al. NIPS 2013
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LEARNING THE
HYPERPARAMETERS



Learning the hyperparameters

We maintain a probabilistic belief on θ. We start with a prior

p(θ),

and given data D we find the (approximate) posterior

p(θ | D).

The uncertainty in θ (in particular, its entropy) measures our
progress!
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The prior

The prior is arbitrary, but here we took diffuse independent
prior distribution on each entry:

p(θi) = N (θi; 0, σ2
i ).

Could also use something more sophisticated.
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The posterior

Now, given observations D, we approximate the posterior
distribution on θ:

p(θ | D) ≈ N (θ; θ̂,Σ).

The method of approximation is also arbitrary, but we took a
Laplace approximation.
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SELECTING INFORMATIVE
POINTS
Active learning



Selecting informative points

• We wish to sequentially sample the most informative
point about θ.

• We suggest maximizing the mutual information between
the observed function value and the hyperparameters,
particularly in the form known as Bayesian active learning
by disagreement (BALD).1

x∗ = arg max
x

H[y | x,D]− Eθ
[
H[y | x,D, θ]

]
.

1Houlsby, et al. BAYESOPT 2011
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BALD

Breaking this down, we want to find points with high marginal
uncertainty (à la uncertainty sampling). . .

x∗ = arg max
x

H[y | x,D]− Eθ
[
H[y | x,D, θ]

]
.
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BALD

. . . but would have low uncertainty if we knew the
hyperparameters θ:

x∗ = arg max
x

H[y | x,D]− Eθ
[
H[y | x,D, θ]

]
.
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BALD

• That is, we want to find points where the competing
models (one for each value of θ) are all certain, but
disagree highly with each other.

• These points are the most informative points about the
hyperparameters! (We can discard hyperparameters that
were confident about the wrong answer).
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Computation of BALD

How can we compute or approximate the BALD objective for
our model?

x∗ = arg max
x

H[y | x,D]− Eθ
[
H[y | x,D, θ]

]
.

The first term (marginal uncertainty in y) is especially
troubling. . .
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LEARNING THE FUNCTION
Approximate marginalization of GP

hyperparameters



Learning the function

Given data D, and an input x∗, we wish to capture our belief
about the associated latent value f ∗, accounting for
uncertainty in θ:

p(f ∗ | x∗,D) =

∫
p(f ∗ | x∗,D, θ)p(θ | D) dθ.

We provide an approximation called the “marginal GP” (MGP).
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The MGP

The result is this:

p(f ∗ | x∗,D) ≈ N (f ∗;m∗D, C
∗
D),

where
m∗D = µ∗D,θ̂.

The approximate mean is the MAP posterior mean, and. . .
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The MGP

C∗D =
4

3
V ∗D,θ̂ +

∂µ∗

∂θ

>
Σ
∂µ∗

∂θ
+ (3V ∗D,θ̂)

−1∂V
∗

∂θ

>
Σ
∂V ∗

∂θ
.

The variance is inflated according to how the posterior mean
and posterior variance change with the hyperparameters.
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Return to BALD

The MGP gives us a simple approximation to the BALD
objective; we maximize the following simple objective:

C∗D
V ∗D,θ̂

.

So we sample the point with maximal variance inflation. This
is the point where the plausible hyperparameters maximally
disagree under our approximation!
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BALD and the MGP
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EXAMPLE



Example
Consider a simple one-dimensional example (here R is simply
an inverse length scale).
• The blue envelope shows the uncertainty given by the

MAP embedding.
• The red envelope shows the additional uncertainty due to
not knowing the embedding.

• We sample where the ratio of these is maximized.

y

x
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Example

The inset shows our belief over logR, it tightens as we
continue to sample.
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Example
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x
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Example
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Example

We sample at a variety of separations to further refine our
belief about R.

y

x
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Example

Notice that we are relatively uncertain about many function
values! Nonetheless, we are effectively learning R.

y

x
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2d example
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2d example
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Results

• We have tested this approach on numerous synthetic and
real-world regression problems up to dimension D = 318,
and our performance was significantly superior to:
• random sampling,
• Latin-hypercube designs, and
• uncertainty sampling.
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Test setup

For each method/dataset, we:
• Began with a single observation of the function at the
center of the (box-bounded) domain,

• Allowed each method to select a sequence of n = 100
observations,

• Given the resulting training data, found the MAP
hyperparameters, and

• Used these hyperparameters to test on a held-out set of
1000 points, measuring RMSE and negative log likelihood.
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Results: RMSE

Choosing 100 observations, predicting on 1000 more.

dataset D/d RAND LH UNC BALD

synthetic 10/2 0.412 0.371 0.146 0.138
synthetic 10/3 0.553 0.687 0.557 0.523
synthetic 20/2 0.578 0.549 0.551 0.464
synthetic 20/3 0.714 0.740 0.700 0.617
Branin 10/2 18.2 17.8 3.63 2.29
Branin 20/2 18.3 14.8 13.4 15.0
communities & crime 96/2 0.720 — 0.782 0.661
temperature 106/2 0.423 — 0.427 0.328
CT slices 318/2 0.878 — 0.845 0.767
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Reminder

The framework we have presented for actively learning linear
embeddings is completely general; we can use it for actively
learning hyperparameters in any GP model!
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Question

Both these approaches suggest a two-stage approach for
optimization. Is this necessary? Can we use BALD to learn the
embedding while simultaneously optimizing the function?
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Code

github.com/rmgarnett/
active_gp_hyperlearning
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github.com/rmgarnett/
active_gp_hyperlearning


PAPER
For more details



UAI 2014

Actively Learning Linear Embeddings
for Gaussian Processes, UAI 2014.
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Extension: NIPS 2015

Extension to model selection, one
step closer to fully automated
Bayesian optimization!

Bayesian Active Model Selection with
an Application to Automated
Audiometry, NIPS 2015.
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Extension: NIPS 2016

Another extension to model selection
with fixed datasets, one step closer to
fully automated Bayesian
optimization!

Bayesian optimization for automated
model selection, NIPS 2016.
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THANK YOU!
Questions?
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