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Introduction to Sequential Uncertainty Reduction
Towards conservative excursion set estimation

Our main topic today: background and motivations

A number of practical problems boil down to determining sets of the form

Γ ? = {x ∈ D : f (x) ∈ T} = f−1(T )

where f : D −→ Rk (k ≥ 1) and D is a subset of Rd (d ≥ 1).

Examples

Contour lines

Excursion/sojourn sets above/below thresholds

Admissible regions in constrained optimization

High gradient/high curvature regions, etc.

(Pareto sets in multi-objective optimization. . . but then T depends on f !)
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Introduction to Sequential Uncertainty Reduction
Towards conservative excursion set estimation

Background and motivations

We essentially focus today on the case where k = 1, D is compact, f is
continuous, and T = [t ,+∞) or (−∞, t ] for some prescribed t ∈ R.

Γ ? = {x ∈ D : f (x) ≥ t} is then referred to as the excursion set of f above t .

Our aim is to estimate Γ ? and quantify uncertainty on it when f can solely be
evaluated at a few points, both in static and sequential cases.
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Test case from safety engineering

Figure: Excursion set (light gray) of a nuclear criticality safety coefficient
depending on two design parameters. Blue triangles: initial experiments.

C. Chevalier (2013).
Fast uncertainty reduction strategies relying on Gaussian process models.
Ph.D. thesis, University of Bern.
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Making a sensible estimation of Γ ? based on a drastically limited number of
evaluations f (Xn) = (f (x1), . . . , f (xn))′ calls for additional assumptions on f .

As before, we consider the Bayesian framework where a Gaussian Process
(GP) prior is put on f , i.e. f is seen as one realization of a GP (Z (x))x∈D

(characterized in distribution by a mean m and a covariance kernel k ).

In the GP set-up, the main object of interest is represented by

Γ = {x ∈ D : Z (x) ∈ T} = Z−1(T )

Under our previous assumptions on T and assuming that is chosen Z with
continuous paths, Γ is a Random Closed Set (See thesis below and
references therein for detail).

D. Azzimonti (2016).
Contributions to Bayesian set estimation relying on random field priors.
Ph.D. thesis, University of Bern.
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Simulating excursion sets under a GRF model
Posterior simulations on a 50× 50 grid of Z and Γ knowing Z (Xn) = f (Xn).
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How to quantify the uncertainty on Γ?

There are many ways to quantify uncertainties on sets!

This will be one of the recurring questions throughout the talk, but we will not
be exhaustive by far. For more detail see, e.g.,

I. Molchanov (2005)
Theory of Random Sets.
Springer.

D. Azzimonti, J. Bect, C. Chevalier and D. Ginsbourger (2016).
Quantifying uncertainties on excursion sets under a Gaussian random field prior.
SIAM/ASA Journal on Uncertainty Quantification.

Before moving to random set-related concepts, a first spontaneous idea is to
“scalarize” the problem, for instance by looking at Γ’s volume. Let us make a
detour through some GP basics in order to do so.
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Kriging (Gaussian Process Interpolation)

{
mn(x) = m(x) + k(Xn, x)T k(Xn,Xn)−1(f (Xn)−m(Xn))

s2
n(x) = k(x, x)− k(Xn, x)T k(Xn,Xn)−1k(Xn, x)
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From Ln(Zx) = N (mn(x), s2
n(x)), the “coverage probability” of Γ (or

conditional/posterior probability of excursion, here) can be expanded as

pn(x) = Pn(x ∈ Γ ) = Pn(Z (x) ≥ t) = Φ
(

mn(x)−t
sn(x)

)
david@idiap.ch; ginsbourger@stat.unibe.ch Quantif. & reducing uncertainty on sets with GPs 9 / 26
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From pn to moments of Γ’s volume
Denote by µ a finite measure on (D,B(D)) and set α∗ = µ(Γ∗), i.e. the
“volume of excursion” in the considered case.

The GP model leads to a random analogue α = µ(Γ), and by Robbins’
theorem, the posterior expectation of α can be written in terms of pn:

En[µ(Γ)] = En

[∫
D

1Γ(u)dµ(u)

]
=

∫
D

pn(u)dµ(u)

However, the (posterior) distribution of α has been considered analytically
intractable.

R.J. Adler (2000)
On excursion sets, tube formulas and maxima of random fields.
Annals of Applied Probability, 10(1):1-74.

E. Vazquez and M. Piera Martinez (2006).
Estimation of the volume of an excursion set of a Gaussian process using
intrinsic Kriging.
arXiv:math/0611273 [math.ST].
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About conditional moments of α

Fortunately, as already pointed out in Molchanov 2005 in more general
settings, En[αr ] can also be worked out for r ≥ 2), at the price of calculating
integrals. In our framework, we have indeed:

En[αr ] = En

[(∫
D

1Γ(u)dµ(u)

)r]
= En

[(∫
D

1Γ(u1)dµ(u1)

)
. . .

(∫
D

1Γ(ur )dµ(ur )

)]
=

∫
D
· · ·
∫

D
En [1Γ(u1) . . . 1Γ(ur )] dµ(u1) . . . dµ(ur )

=

∫
D
· · ·
∫

D
Pn(Zu1 ≥ t , . . . ,Zur ≥ t)dµ(u1) . . . dµ(ur )

Hence, recalling the GP assumption, En[αr ] writes as an r -dimensional
integral which integrand involves a r -dimensional Gaussian CDF.
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A useful bound for the case r = 2

In what follows, the case r = 2 will be of special importance as we will
consider sequential design strategies aiming at reducing Varn[α].

The following underlined quantity, that is easier to compute and also comes
with a nice interpretation, has been used as well:

Varn[α] = En

[(∫
D

(1Γ(u)− pn(u))dµ(u)

)2
]

≤ µ(D)En

[∫
D

(1Γ(u)− pn(u))2dµ(u)

]
= µ(D)

∫
D

pn(u)(1− pn(u))dµ(u)︸ ︷︷ ︸
Integrated indicator variance

The excursion volume’s variance and the integrated indicator variance are
used as two particular “measures of uncertainty” in what follows.
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Towards Stepwise Uncertainty Reduction strategies
Let us informally consider the following 1-step-lookahead scheme:

For some chosen (say, non-negative) functional defined on GP
distributions, define the uncertainty at time n ≥ 0, Hn, as this functional
applied to the current posterior GP (E.g., Hn = varn(α)).

Starting from some intial design {x1, . . . , xn0}, at each iteration n ≥ n0,
evaluate f at a point x?n+1 minimizing the so-called SUR criterion
associated with the chosen notion of uncertainty:

Jn(xn+1) := En(Hn+1(xn+1))

See notably the following paper and seminal references therein:

J. Bect, D. Ginsbourger, L. Li, V. Picheny and E. Vazquez.
Sequential design of computer experiments for the estimation of a probability of
failure.
Statistics and Computing, 22(3):773-793, 2012.
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SUR strategies: Two candidate uncertainties

Two possible definitions for the uncertainty Hn are considered below:

Hn :=V arn(α)

H̃n :=

∫
D

pn(1− pn)dµ

Uncertainties:

Hn :=V arn(α)

H̃n :=

∫
X

pn(1− pn)dµ

SUR criteria:

Jn(x) :=En(V arn+1(α))

J̃n(x) :=En

(∫
D

pn+1(1− pn+1)dµ
)

Main challenge to calculate J̃n(x) (similar for Jn(x)): Obtain a closed form
expression for En (pn+1(1− pn+1)) and integrate it.
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Deriving SUR criteria

Proposition

En(pn+1(x)(1− pn+1(x))) = Φ2

((
a(x)
−a(x)

)
,

(
c(x) 1− c(x)

1− c(x) c(x)

))

• Φ2(·,M): c.d.f. of centred bivariate Gaussian with covariance matrix M

• a(x) := (mn(x)− t)/sn+1(x),

• c(x) := s2
n(x)/s2

n+1(x)

C. Chevalier, J. Bect, D. Ginsbourger, V. Picheny, E. Vazquez and Y. Richet.
Fast parallel kriging-based stepwise uncertainty reduction with application to the
identification of an excursion set.
Technometrics, 56(4):455-465, 2014.

C. Chevalier, V. Picheny and D. Ginsbourger.
The KrigInv package: An efficient and user-friendly R implementation of
Kriging-based inversion algorithms.
Computational Statistics & Data Analysis, 71:1021-1034, 2014
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Back to the test case with SUR
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Batch-sequential SUR strategies

Figure: 3 SUR iterations (J̃n criterion with q = 4)
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Further questions about SUR and UQ on sets

About the consistency:

J. Bect, F. Bachoc and D. Ginsbourger (2017+).
A supermartingale approach to Gaussian process based sequential design of
experiments.
HAL/Arxiv paper (hal-01351088, Arxiv: 1608.01118).

Of course, in operational conditions, asymptotic results are worthwhile.
However, concrete finite-sample outputs such as estimates of Γ? and
quantifications of the associated uncertainty are required as well.

Now, n being fixed, how to estimate Γ? and to assess/represent the variability
of the corresponding estimate(s)?
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How to summarize the posterior distribution of sets?

For application purposes, let us reverse the perspective and focus on the
sojourn/excursion case below t , where Γ = {x ∈ D : Z (x) ≤ t} and
pn : x ∈ D → pn(x) = Pn(Z (x) ≤ t).

Define the (conditional) quantiles of Γ as
ρ−level sets of pn:

Qρ : = {x ∈ D : pn(x) ≥ ρ}
= {x ∈ D : Pn(Z (x) ≤ t) ≥ ρ}.

How well Qρ estimates Γ can be quantified for
instance through the “expected deviation”:

En (µ(Qρ∆Γ))
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Estimates of Γ ?: the Vorob’ev expectation

The Vorob’ev expectation of
Γ | (Zx1 = f (x1), . . . ,Zxn = f (xn)) is the ρ?

level set of pn such that

µ(Qρ?) = En[µ(Γ )].

It is a state of the art result that Qρ?

minimizes S → En (µ(S∆Γ)) among all
closed sets S ⊂ Rd with volume En[µ(Γ )].

C. Chevalier, D. Ginsbourger, J. Bect, and Molchanov, I.
Estimating and quantifying uncertainties on level sets using the Vorob’ev
expectation and deviation with Gaussian process models.
mODa 10 Advances in Model-Oriented Design and Analysis, Physica-Verlag HD,
2013.
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Estimates of Γ ?: some limitations of Qρ quantiles

In practice one often wish to give confidence statements on the estimates.

Qρ contains points which have marginal
probability at least ρ of being in Γ .

⇒ no confidence statement on the
probability of the actual excursion set
containing this specific estimate.

E.g., the probabilities of Qρ containing the
excursion set (computed on a grid) are

0.67 for ρ = 0.95

0.009 for ρ = 0.5

0.019 for ρ = 0.56 (Vorob’ev)
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probability of the actual excursion set
containing this specific estimate.

E.g., the probabilities of Qρ containing the
excursion set (computed on a grid) are

0.67 for ρ = 0.95

0.009 for ρ = 0.5

0.019 for ρ = 0.56 (Vorob’ev)
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Conservative Estimates of Γ ?

We denote by conservative estimate for Γ | (Zx1 = f (x1), . . . ,Zxn = f (xn)) at
level β the largest Qρ such that Pn(Qρ ⊂ Γ) ≥ β:

Et,α = arg max
Qρ
{µ(Qρ) : Pn(Qρ ⊂ Γ) ≥ β}

D. Bolin, F. Lindgren.
Excursion and contour uncertainty regions for latent Gaussian models.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2014.

Such conservative estimate Et,β is hence

the largest quantile such that, with probability β, the response is below
the threshold simultaneously at each of its locations.

based on a confidence statement on the whole set
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Computing conservative estimates

The computation of a conservative estimate

Et,β = arg max
Qρ
{µ(Qρ) : Pn(Qρ ⊂ Γ) ≥ β}

presents two (nested) computational bottlenecks:
1 find the set with the maximum volume;
2 compute Pn(Qρ ⊂ Γ).

For recent work on computing the last term, see for instance

D. Azzimonti and D. Ginsbourger (2017+).
Estimating orthant probabilities of high dimensional Gaussian vectors with an
application to set estimation.
arXiv:1603.05031 [stat.ME], accepted to J. Comp. Graph. Stat.
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Computing Pn(Qρ ⊂ Γ)

If Qρ is discretized over a grid W = {w1, . . . ,wm}, then

Pn(Qρ ⊂ Γ) = Pn(Zw1 ≤ t , . . . ,Zwm ≤ t) = 1− Pn

(
max

i=1,...,m
Zwi > t

)

There exists a number of algorithms to estimate Pn(Zw1 ≤ t , . . . ,Zwm ≤ t):

1 quasi-MC integration techniques
very fast and reliable in small dimensions;
hardly usable for dimensions higher than 1000.

2 pure MC techniques:
dimension independent;
high number of simulations for small variance.

IRSN test case

an estimate with a good resolution requires an 100× 100 grid for D;

W consists of +1000 grid points for some Qρ.
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Pn(maxw∈W Zw > T ): proposed hybrid algorithm

Algorithm:
1 select q grid points, denoted Wq ⊂ W ;

2 compute p′ = P(maxw∈Wq Zw > t) with qMC quadrature;

3 estimate Pn(maxw∈W Zw > t) with

p̂ = p′ + (1− p′)R̂q

where R̂q is a MC estimator of

Rq = Pn

(
max

w∈W\Wq
Zw > t

∣∣∣ max
w∈Wq

Zw ≤ t
)

An asymmetric nested Monte Carlo scheme was developed for improved
efficiency in Rq ’s estimation. (See ”orthant” paper and anMC R package).
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Back to the test case with a conservative estimate. . .

NB: here, ρ = 99.88829% for a confidence of 99.12178%.
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. . . and associated sequential strategies
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For more on sequential conservative estimation

D. Azzimonti, D. Ginsbourger, C. Chevalier, J. Bect, Y. Richet (2017+).
Adaptive Design of Experiments for Conservative Estimation of Excursion Sets.
arXiv:1611.07256v2 [stat.ME]

Some open questions and perspectives

Asymptotic results in the conservative case?

Study the effect of threshold plug-in in the criteria.

Investigating options closer to ”Full Bayesian” for this problem.
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Overall perspectives on GP-based set estimation

Transpose work to other families of implicitly defined regions.

Consider families of set estimates beyond quantiles.

Investigate rates of convergence for SUR strategies (?).

Acknowledgements: Drs Yann Richet and Grégory Caplin (French Nuclear
Safety Institute) for providing the criticality safety test case.
Special thanks to Drs. Dario Azzimonti and Clément Chevalier for numerous
invaluable inputs, and more generally, to all co-authors involved.
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Generalized optimality property for Vorob’ev quantiles

Proposition

For any ρ ∈ [0, 1], the Vorob’ev quantile

Qρ = {x ∈ D : pn(x) ≥ ρ}

minimizes the expected distance in measure with Γ among measurable sets
M such that µ(M) = µ(Qρ), i.e.,

En [µ(Qρ∆Γ)] ≤ En [µ(M∆Γ)] ,

for any measurable set M such that µ(M) = µ(Qρ).

A proof of this property is presented in Dario Azzimonti’s PhD thesis (2016).
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